CSCI 1820/2820: An overview

 Spring 2022- Ch. 1 BLAST Algorithm and Karlin-Altschul Statistics
- Ch. 2 Genome Assembly and Haplotype Assembly Algorithms
- Ch. 3 Hidden Markov Models (HMM) Algorithms: The Learning Problem
- Ch. 4 Recombination and Ancestral Recombination Graphs (ARGs)
- Ch. 5 Rigorous Clustering and Spectral Clustering Algorithms
- Ch. 6 Algorithms for Constructing Suffix Trees in Linear Time
- Ch. 7 Protein Folding Algorithms (Introduction)

Ch. 1: BLAST Algorithm

Questions: When a DNA sequence or protein sequence is a biological sequence? How can we computationally identify them?

Examples of problems we need to solve along the way:

Problem 1. General scoring schemes - and the max scoring subsequence

Problem 2. The Gambler's Ruin/Random Walks

The BLAST Algorithm

Authors

- Stephen Altschul
- Warren Gish
- Webb Miller
- Eugene W. Myers
- David Lipman
- "Basic Local Alignment Search Tool"

Journal of Molecular Biology (1990) 215, 403-410

Karlin Altschul Equation

$$
E=k m N e^{-\lambda s}
$$

m Number of letters in query
N Number of letters in db
mN Size of search space
As Normalized score
k minor constant

Gambler's Ruin problem

In Sir Ronald Fisher we trust!

Dr. Margaret Oakley Dayhoff
 The Mother \& Father of Bioinformatics

Smith and Waterman at Los Alamos, New Mexico

 Photo by David Lipman, Taken Summer of 1980
Smith and Waterman

Karlin-Astschul Statistics Theory

- Samuel Karlin and Stephen Altschul

Ch. 2: Genome Assembly and Haplotype Assembly Algorithms

Questions: What algorithms to use to assemble DNA pieces into a contigs? How long are the contigs?
How much the DNA target region is covered by the contigs?
Examples of problems we need to solve along the way
Problem 1. Poisson statistics and DNA and Assembly
Problem 2. Ham Smith's DNA breaking in a Lab with no windows

Hamiltonian Paths Algorithms for Genome Assembly

Gene Myers
Craig Venter

Eulerian Paths Algorithms for Genome Assembly

Pavel Pevzner
Michael Waterman

Construct the sequence graph on (k-1)mers

Construct the sequence graph on (k-1)-

mers

f_{1}	TTCAGG	TTCA	For each k-mer $\left(a_{1} \ldots a_{k}\right)$, we create an edge between nodes
f_{2}	TTCATGG	TCAG	labeled $a_{1} \ldots \mathrm{a}_{\mathrm{k}-1}$ and $\mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{k}}$.
f^{\prime}	ATGGACA	CAGG	If those nodes do not exist yet,
3	ATGGACA	TCAT	we add them to the graph.
f_{4}	TTCAT	CATG	We label the edge by its k-mer,
f_{5}	CATCGAC	ATGG	$a_{1} \ldots a_{k} .$
		TGGA	
f_{6}	TCGAC	GGAC	values (f, i, j) in each edge,
f_{7}	GACATC	GACA	which identify all occurrences of that k-mer by (fragment index,
f_{8}	ACATCGA	CATC ATCG	start position, end position)*
		TCGA	
		CGAC	
		ACAT	

Graph reductions: singletons

Align the reads to the assembled sequence

$f_{1} \quad$ TTCAGG
f_{2} TTCATGG
f_{3} ATGGACA
$\mathrm{f}_{4} \quad$ TTCAT
f_{5} CATCGAC

First, we apply hashing methods to identify where each fragment might align well to the sequence.

This will produce "candidate diagonals."

We can then perform alignment along those diagonals, which is more efficient than using the entire edit graph.

Statistics of Sequence Graphs: vertices

$$
\begin{aligned}
\mathbb{E}(\text { True }) & =L^{\prime} \sum_{i=1}^{\infty}\left(1-R^{i}\right) \mathbb{P}(X=i) \\
& =L^{\prime} \sum_{i=1}^{\infty}\left(\frac{e^{-c} c^{i}}{i!}-\frac{e^{-c}(c R)^{i}}{i!}\right) \text { pmf of Poissor } \operatorname{Pr}(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!} \\
& =L^{\prime}\left(1-e^{-c(1-R)}\right) . \quad \begin{array}{c}
\text { using Taylor } \\
\text { expansion for } \\
\text { e: }
\end{array} e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
\end{aligned}
$$

Summing the number of false vertices and true ${ }^{\mathrm{Ve}}$ The expected number of vertices $\mathbb{E}(|V|)=R T+\left[1-e^{-c(1-R)}\right] L^{\prime}$.

Assembly Progression (Macro View)

Tools	Lines	Marks	Links	Overlaps

-	Read
\square	Valid
\square	Invalid
\square	U-Unitis
\square	Contig
\square	Rock
\square	Stone
\square	Pebble

Ch. 3: HMM - the Learning Problem

Hidden Markov Model

x_{1}	x_{2}	x_{2}	\ldots	x_{1}

input sequence

- $\lambda=(\mathrm{n}, \mathrm{A}, \mathrm{B}, \pi)$
- ne Number of states in the model
- A Traneliton Matitit
$A=\{3\},,[\}<n$
- Be Embston Mattix
$B=b(x)$,
- Jt Inital State Probebillides
$\left.\pi=\pi \pi_{\nu} \pi_{\nu}, \pi_{\lambda}\right\rangle$
 probability

What does machine learning an HMM model mean?

Maximum Likelihood and the Expectation-Maximization problem

Ch. 4 Recombination and Ancestral Recombination Graphs (ARG)

 Algorithms

How do we reconstruct genealogies of a sample of individuals incorporating past mutations and recombinations?

Recombination + Phylogenetic Trees $=$ ARG

Individual 2

Ch. 3: Spectral Clustering

GRAPH LAPLACIANS

- Quick example

Eigenvalues

Eigenvector 4
Eigenvector 5

Sentences in red and graphs are cited from A Tutorial on Spectral Clustering (Ulrike von Luxburg). See reference list at the enfor detail.

GRAPH CUT POINT OF VIEW

Sentences in red and graphs are cited from A Tutorial on Spectral Clustering (Ulrike von Luxburg). See reference list at the enfor detail.

RANDOM WALK POINT OF VIEW

- What is random walk?
- A random walk on a graph is a stochastic process which randomly jumps from vertex to vertex.
- How does it walk?
- Formally, the transition probability of jumping in one step from vertex vi to vertex $\mathbf{v j}$ is proportional to the edge weight wij and is given by pij := wij/di.
- The transition matrix $P=(p i j) i, j=1, \ldots, n$ of the random walk is thus defined by
- Initial condition?

$$
P=D^{-1} W .
$$

$-\quad$ a unique stationary distribution $\pi=(\pi \mathbf{1}, \ldots, \pi n)^{*}$, where $\boldsymbol{\pi i}=\mathbf{d i} / \operatorname{vol}(V)$.

- Clustering in random walk?
- Finding a partition of the graph, such that the random walk stays along within the same cluster and seldom jumps between clusters.
- Intuitively, it is the same as the graph cut.

Sentences in red and graphs are cited from A Tutorial on Spectral Clustering (Ulrike von Luxburg). See reference list at the enfor detail.

Ch. 6 Suffix Trees in Linear Time

Ch. 7 Protein Folding Algorithms (Intro)

- Protein Folding on Lattice Models
- AlphaFold and Deep Learning

High-level Overview of Architecture of AlphaFold

Deep learning uses sequential modules (layers) to progressively extract information (learn) from the input data.

Mixed character of the problem :
continuous mathematics -- geometry of surfaces \& discrete mathematics -- combinatorics of folds

