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Clustering space and its distance

A clustering problem is given by a space of elements we refer
to as points which are objects belonging to that space. Think
of the space as being a set from which a set points, the input
data set, are drawn.

For the spaces for whcih we define clustering problems, we
need to have a distance measure between any two points in
the space.

Clustering problems could be formulated for spaces which are
Euclidean spaces or Non-Euclidean spaces.
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Euclidean (of low dimesnions) spaces for clustering

Euclidean spaces of low dimensions: points are vectors of
real numbers.The components of the points (vectors) are
called coordinates. The number of coordinates is the
dimention of the space.

Examples of Euclidean spaces and their distances: Rn the
n-dimensional real numbers vector space;
Distance: The common Euclidean distance, which is the
square root of the sum of the squares of the difference between
the coordinates of the points in each dimension.

Other distances: the Manhattan distance which is defined as
the sum of magnitudes of the differences in each dimension;
also the L∞-distance which is defined as the maximum
magnitude of the difference in any dimension
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Non-Euclidean spaces for clustering

Non-Eucliden spaces: Euclidean spaces of very high
dimension of spaces are not Euclidean at all

Examples of Non-Euclidean spaces and their distances:
Clustering documents by their topic based on the occurence
of common, unusual words in the documents;
clustering social media communities by the types of
preferences they have, e.g., moviegoers by the type of movies
they like;
clustering biological sequences by their similarity and
distance measures.
Examples of distance metrics for Non-Euclidean spaces are the
Jaccard distance, the cosine distance (dot product), the
Hamming distance, and the edit distance.
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The ‘Curse of Dimensionality”

It is quite unintuitive to think about high-dimensional
Euclidean spaces. They have a set of surpising properties hard
to imagine and visualize and thing about: these non-intuitive
structures are called “The Curse of Dimensionality”

Here are two shocking propoerties of such high-dimensional
Eulidean spaces

1 In high-dimensions Euclidean spaces almost all pairs of
points are equally far away from one another

2 in high-dimensions Euclidean spaces almost any two
vectors are almost orthogonal
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Non-Euclidean Spaces

A very important property of Euclidean spaces is that the
average of points in a Euclidean space always exists and
is a point in that space.

Consider the space of finite sets, and there consider the
Jaccard distance for two sets S and T ( = 1- ratio of the
intersetion of S and T and the uninion of S and T ).
The notion of average in this space of sets makes no
sense!

Consider the space of finite strings where we can use the Edit
distance.
It makes no sense to define the notion of average on
sets of strings!
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Non-Euclidean Spaces

Vector spaces for which we can use the Cosine distance, may
or may not be Euclidean.
If the vectors are real numbers vectors then the space is
Euclidean.

If we restrict the vectors to have integer coordinates, the
space is no longer Euclidean. We cannot find the concept of
average of vectors [1, 5] and [4, 3]. If we think of them as
being part of the two-dimensional Euclidean space, a concept
of average could be [2.5, 4] but this point is not in the space
of vectors with integer coordinates!
Similarly, the space of vectors with all components Boolean
(i.e., 0 and 1) is also a non-Euclidean space.
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Definition of a Distance Measure

Suppose we have a set of points called a Space.
A distance measure on this space is a function d(x , y) that
takes two points in the space as arguments and produces a
real number, and satisfies the following axioms;

1 Axiom 1. No negatie distances: d(x , y) ≥ 0
2 Axiom 2. Zero distance: d(x , y) = 0 if and only iff x = y
3 Axiom 3. Distance is symmetric: d(x , y) = d(y , x)
4 Axiom 4. The triangle inequality: d(x , y) ≤ d(x , z) + d(z , y)
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Five Important Distance Measures

Euclidean Distances

Jaccard Distawnce

Cosine Distance

Edit Distance

Hamming Distance
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Euclidean distance

The most well-known distance measure; our intutive notion of
distance

The Euclidean space is the n-dimensional Euclidean space
and consists of all the points that are vectors of n real
numbers.

The Euclidean distance d or the L2-norm is defined by

d([x1, ..., xn], [y1, ..., yn]) =

√√√√ n∑
i=1

(xi − yi )2
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Other Euclidean Distances

For any constant r we can define the Lr -norm to be the
distance measure d defined by

d([x1, ..., xn], [y1, ..., yn]) = (
n∑

i=1

| xi − yi |r )
1
r

The L1-norm is also called the Manhattan distance, i.e, the
distance between two points is the sum of the magnitudes of
the differences in each dimension (distance measured amoung
grid points as along the streets in Manhattan).

The L∞-norm, which is the limit as r goes to infinity of the
Lr -norm. L∞ is defined as the maximum of all | xi − yi | for
all i .
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Jaccard Distance

The Jaccard similarity is a measure of how close two sets are
but it is not formally a distance measure. The closer the sets
are, the higher the Jaccard similarity. We can associate an
actual distance measure to it, whcih will call the Jaccard
distance.
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the Jaccard similarity of two sets S and T is given by

SIM(S ,T ) =
| S ∩ T |
| S ∪ T |

the Jaccard distance d(x , y) is given by

d(x , y) = 1− SIM(x , y)

i.e., it equals 1 minus the ratio of the sizes of the intersection
and the union of the sets x and y .
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Cosine Distance

The Cosine distance is defined in spaces that have
dimensions e.g., Euclidean spaces with real numbers as
coordinates of the vectores. But also applies to Discrete
spaces, i.e., spaces of n-dimensional vectors with coordinates
that are integers as well as spaces with vectors having
Boolean coordinates , i.e., 0 and 1. Discrete spaces are
non-Euclidean spaces.
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Cosine Distance

We think of the points (vectors) as representing directions.
We do not distinguish between a vector and a multiple of that
vector. Then the cosine distance between two points is the
angle that the vectors to the points make.

This angle will always be between 0 and 180 degrees no
matter how many dimensions the space has. we can calculate
the cosine distance by first computing the cosine of the angle
and then applying the arc-cosine function to translate to an
angle of the 0− 180 degree range.
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Cosine Distance

Given two vectors x and y , the cosine of the angle between
them is the dot product x .y divided by the product of the
L2-norms of x and of y . For each x , the L2-norm of x is just
the Euclidean distance from the origin; similarly for y .

The dot product of x = [x1, ..., xn] and y = [y1, ..., yn] is
given by

[x1, ..., xn].[y1, ..., yn] =
n∑

i=1

xiyi
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Edit Distance

For the space of strings we have the Edit distance. The
distance between two strings x = x1...xn and y = y1...yn is the
smallest number of insertions and deletions of single
characters that will convert x to y
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Hamming Distance

Given a space of vectors, we define the Hamming Distance
between two vectors to be the number of components in
which they differ.

Usually, the Hamming distance is used when the vectors are
Boolean, i.e. consist of 0s and 1s only.
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Hierarchical Clustering in Euclidean and non-Euclidean
Space

The Hierarchical Clustering algorithm in Euclidean spaces
uses the notion of Centroid and can be used only on
relatively small data sets

When the space is non-Euclidean there are additional
problems associated with hierarchical clustering; we will
consider “clustroids” and new ways to represent the clusters
when there is no centroid point in the cluster
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Hierarchical Clustering intuition

The intuition for the hierachical clustering algorithm is as
follows.

We begin with every point in its own cluster.

As the algorithm progresses larger clusters are constructed by
combining two smaller clusters

Issues that we need to consider

CLUSTER REPRESENTATION: How do we represent the
clusters?
MERGING RULE: How to determine which clusters to merge?
STOPPING RULE: When the algorithm will stop merging
clusters?
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Hierarchical Clustering in Euclidean spaces:
Cluster Representation

We assume that the clustering space is Euclidean

This allows us to represent a cluster by its centroid or
average of the points in the cluster

In a cluster with just one point, that point is the centroid, so
we can initialize the clusters this way. We start the algorithm
by placing each point in its own cluster, with the point as its
centroid.
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Hierarchical Clustering in Euclidean spaces: Merging Rule

We use as the distance between clusters the Euclidean
distance between their centroids.

We merge then the two clusters at shortest distance of each
other; if ties, break ties arbitrarily.

There are other possible definition of the merging rule, e.g.,
using different distance measures
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Hierarchical Clustering in Euclidean spaces: Stopping Rule

There are several ways to defining stopping rules for the
hierarchical clustering

1 If the number of clusters k is given as part of input, then we
need to stop when there are k clusters

2 Another stopping option is to stop the algorithm when the
next merging produces a cluster that is inadequate. There are
number of such tests of adquacy of a cluster, e.g., we can
require that the the average distance in a cluster between the
centroid and any point in the cluster to be no greater than
some constant distance.Such restrictions should be based on
the structure of the data domain that we cluster

3 The most common rule is to stop the algorithm whenre there
is only one cluster.
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Hierarchical Clustering in Euclidean spaces: The resulting
clusterig represented as a tree

We present the output of the algorithm as a tree representing
the way in which all the points were combined through the
merging rule.

This representation is inspired by the philogeny tree
construction algorithms where brancing represented
evolutionary brancing events and the distance measure
captures evolutionary time approximations. The philogeny
tree algorithms clusterig space is non-Eulcidean but the
principles of hierachical clustering carry over with some
modifications to non-Euclidean clustering.
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Hierarchical Clustering in Euclidean spaces: Time
complexity and speed ups

The algorithm for hierarchical clustering is not really efficient.
At each step it must compute the distances between each pair
of clusters in order to find the best merge move. The initial
step takes O(n2) and then the next steps take respectively
(n− 1)2, (n− 2)2, ... and so the total time (the sum of squares
up to ne) is O(n3). This is a cubic time algorithm. As such it
can be applied only to clustering of small number of points
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Hierarchical Clustering in Euclidean spaces: Time
complexity and speed ups

Here is how we can speed up the algorithm

We start by computing all pairwise distances between the n
points, taking time O(n2)
Place all the pair of points and their distances in a priority
queue (a basic data structure) so that it can always find the
smallest distance in one step; this takes time O(n2)
When we decide to merge two clusters A and B we remove all
entries in the priority queue that involves one of these two
clusters; this requires time O(n log n) as there are at most 2n
deletions to be performed and priority queue deletions can be
done in O(log n)
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Hierarchical Clustering in Euclidean spaces: Time
complexity and speed ups

The algorithm then computes all the distances between the
new cluster and the remaining clusters; this work takes also
O(n log n) as there are at most n entries to be inserted into
the priority queue, and insertions in the priority queue takes
O(log n)

Since the last two steps are executed at most n times and the
first two steps are executed only once, the overall running
time of this algorithm is O(n2 log n). Clearly this is faster time
than O(n3). Still this implies that n cannot be too big.
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Hierarchical Clustering in Euclidean spaces: more ideas on
algorithm design for Merging rules

We can use different Merge Rules than MERGE RULE 0: the
pair of clusters with the smallest distance between centroids.
These new rules will give rise in general to entirely different
clustering structures

MERGE RULE 1: use the distance between two clusters to be
the minimum of the distances between any two points, one
chosen from each cluster.
MERGE RULE 2: use the distane betweent two clusters to be
the average distance of all pairs of points, one from each
cluster.
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Hierarchical Clustering in Euclidean spaces: more ideas on
algorithm design for Merging rules

MERGE RULE 3: The radius of a cluster is is the maximum
distance between any all points and the centroid. Use this
new merging rule: merge two clusters whose resulting radius is
the smallest. Other choices are:

use minimal average distance between all points and the
centroid
use minimal sum of squares between all points and the centroid

MERGE RULE 4:The diameter of a cluster is the maximum
distance between any two points fo the cluster. use as a
merging rule to merge two clusers whose resulting cluser has
the smallest possible diameter. Similar variations could
include average and sum of squares diameter computations.
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Hierarchical Clustering in Euclidean spaces: more ideas on
algorithm design for Stopping rules

STOPPING RULE 0: is when we have obtained k clusters,
wher k is given by the input

STOPPING RULE 1: stop when the diameter of the cluster
that results from the best merger exceeds a threshold, set in
advance. Variations on the theme: radius and its variations
given above
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Hierarchical Clustering in Euclidean spaces: more ideas on
algorithm design for Stopping rules

STOPING RULE 2: stop if the density of the cluster that
results from the best merger is below a threshold, set in
advance. One way to define density is to number of cluster
points per “unit volume” of the cluster, defined as the ratio of
thenumber of points in the cluster divided by the diameter or
radius raised to some power. This power is the number of
dimensions of the space, but in practice power is chosen as 1
or 2.
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iHerarchical Clustering in Euclidean spaces: more ideas on
algorithm design for Stopping rules

STOPPING RULE 3: stop when there is evidence that the
next pair of clusters to be merged would yield a bad cluster.
One way to think about this is as follows. Compute all the
diameters of the clusters as we advance in the algorithm.
Track the average of the diameters as we advance in the
algorithm. Averave will go up gradually as we move along,
meaning that the clustering brings together points that are
close to each other. A “bad” clustering move would be one
that make the average diameter jump.
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Hierarchical Clustering in non-Euclidean spaces

When the space is non-Eulcidean we need some distance
measures that are computed from points:

Jaccard distance
Cosine distance
Edit distance
Hamming distance

Sorin Istrail Clustering Theory and Spectral ClusteringLecture 1



Ch. 5 Clustering Theory and Spectral Clustering
A Set of Fundamental Distance Measures

Hierarchical Clustering
Distributions of Distances in a High-Dimensional Space

Hierarchical Clustering in Euclidean Space
Hierarchical Clustering in non-Euclidean Space

Hierarchical Clustering in non-Euclidean spaces: Clustroids

Our Hierachical Clustering algorithms requires distances
between points to be computed, but we cannot base the
distances by “location”.

We know how to compute the above distance measures;

What we do not have in an non-Euclidian space is the concept
“centroid” and so we cannot represent the cluster by a
centroid as before.

A new concept: Clustroid which is just one of the
points in the cluster, and we adjust our algorithm design, in a
natural ways, using clustroids.
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Hierarchical Clustering in non-Euclidean spaces: Clustroids

We represent a cluster by its clustroid. We pick one of the
points in the cluster itself to represent the cluster.

Ideally the clustroid point is close to all other points of the
cluster, so in some sense it is the “center”.

We can choose the clustroid in a number of ways, similar with
the centroid based algorithms, to minimize the distances
between the clustroid and other points in the cluster.
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Hierarchical Clustering in non-Euclidean spaces: Clustroids

Choices for selecting the clustroid point that minimizes:

the sum of distances to the other points in the cluster
the maximum distance to any other point in the cluster
the sum of squares of the distances to other points in the
cluster
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Hierarchical Clustering in non-Euclidean spaces: Distance
between clusters

Minimum distance between clustroids

Minimum distance between all pair of points from the two
clusters

Average distance between all pair of points from the two
clusters
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Hierarchical Clustering in non-Euclidean spaces: Density of
the clusters

Measuring density of a cluster can be generalized to
non-Euclinean spaces. We can measure density based on
diameter and radius which can be defined for non-Eulcidean
spaces as well.

The diameter is still the largest distance between any two
points in the cluster

The radius can be defined using the clustroid instead of the
centroid
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Hierarchical Clustering in Euclidean Space
Hierarchical Clustering in non-Euclidean Space

Hierarchical Clustering in non-Euclidean spaces: Stopping
rules

The notions of merge and stopping rules can be generalized
with no substantial change from Euclidean to non-Euclidean
spaces
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Distributions of Distances in a High-Dimensional Space

Consider a d-dimensional Euclidean space.

Suppose we choose n random points in the unit cube, i.e.,
points [x1, ..., xn] where each xi is in tange 0 to 1. Suppose d
is very large. The Euclidean distance between two random
points [x1, ..., xd ] and [y1, ..., yd ] is√√√√ d∑

i=1

(xi − yi )2

Think each xi and yi is a random variable chosen uniformally
in the range 0 to 1.
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Distributions of Distances in a High-Dimensional Space

The maximum distance between two points is
√
d

Almost all points will have a distance close to average distance

If there are essentially no pairs of points that are close, it is
hard to build clusters at all

There is little justificationfor grouping one pair of points and
not another
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Distributions of Distances in a High-Dimensional Space

The above argument is based on random points and for real
data sets there could be stucture useful even in the
high-dimensional spaces

However, the argument about random data suggests that it
will be hard to find these clusters among so many pairs that
are all at approximately the same distance
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