HMM: The Learning Problem

Sorin Istrail
Department of Computer Science
Brown University, Providence
sorin@cs.brown.edu

March 31, 2020

Outline

(1) Outline
(2) The Basic Three HMM Problems
(3) HMM: basic variables and probailities

4 Solution to Problem 3: The Expectation-Maximization Algorithm

- The Reestimation Equations
- The EM Algorithm
- Baum's Q-function and the Baum-Welch Theorem
- The Stochastic Contraints
- Lagrangean multipliers for the solution of the max-optimization
- Observation sequence $\mathcal{O}=o_{1}, \ldots, o_{T}$ and HMM model $\lambda=(A, B, \pi)$
- Problem 1: The Evaluation Problem

Given: \mathcal{O}, λ
Compute: $P(\mathcal{O} \mid \lambda)$ the probability of the observation sequence given the HMM model

- Problem 2: The Decoding Problem Given: \mathcal{O}, λ
Compute: A sequence of states Q for the observation sequence $\mathcal{O}, Q=q_{1}, \ldots, q_{T}$ which optimally "explains" the observation sequence.
- Problem 3: The Learning Problem

Given: \mathcal{O}
Compute: the parameters of an HMM model λ that maximizes the probability $P(\mathcal{O} \mid \lambda)$ of observing \mathcal{O} in the model λ

Problem 1

- Observation sequence $\mathcal{O}=o_{1}, \ldots, o_{T}$ and HMM model $\lambda=(A, B, \pi)$
- Problem 1: The Evaluation Problem Given: \mathcal{O}, λ
Compute: $P(\mathcal{O} \mid \lambda)$ the probability of the observation sequence given the HMM model

Problem 2

- Observation sequence $\mathcal{O}=o_{1}, \ldots, o_{T}$ and HMM model $\lambda=(A, B, \pi)$
- Problem 2: The Decoding Problem

Given: \mathcal{O}, λ
Compute: A sequence of states Q for the observation sequence $\mathcal{O}, Q=q_{1}, \ldots, q_{T}$ which optimally "explains" the observation sequence.

Problem 3

- Observation sequence $\mathcal{O}=o_{1}, \ldots, o_{T}$ and HMM model $\lambda=(A, B, \pi)$
- Problem 3: The Learning Problem Given: \mathcal{O}
Compute: the parameters of an HMM model λ that maximizes the probability $P(\mathcal{O} \mid \lambda)$ of observing \mathcal{O} in the model λ

Elements of an HMM

(1) N is the number of states $S=\left\{S_{1}, \ldots, S_{N}\right\}$.

The HMM process proceeds in discrete units of time, $t=1,2,3, \ldots$.
The state at time t is denoted by q_{t}.
(2) M is the number of distinct observation symbols per state $V=v_{1}, \ldots, v_{M}$
(3) The transition probability distribution is given by $A=\left\{a_{i j}\right\}$, where

$$
a_{i j}=P\left[q_{t+1}=S_{j} \mid q_{t}=S_{i}\right], 1 \leq i, j, \leq N
$$

(9) The observation symbols probability distribution in state j is given by
$B=\left\{b_{j}(k)=P\left[v_{k}\right.\right.$ at time $\left.t \mid q_{t}=S_{j}\right]$,
$1 \leq j \leq N, 1 \leq k \leq M$
(0) The initial state distribution is given by

Basic variables and probabilities

- a sequence of states is $Q=\left\{q_{1}, q_{2}, \ldots, q_{T}\right\}$
- The probability of observing the sequence \mathcal{O} in sequence of states Q is

$$
P(\mathcal{O} \mid Q)=\prod_{i=1}^{T} P\left(\left(o_{i} \mid q_{i}\right)\right.
$$

-

$$
P(\mathcal{O} \mid Q)=b_{q_{1}}\left(o_{1}\right) \ldots b_{q_{T}}\left(o_{T}\right)
$$

-

$$
P(Q)=\pi_{q 1} a_{q_{1} q_{2}} a_{q_{2} q_{3}} \ldots a_{q_{T-1} q_{T}}
$$

-

$$
P(\mathcal{O}, Q)=P(\mathcal{O} \mid Q) P(Q)
$$

Basic variables and probabilities

- the probability of observing \mathcal{O} is
-

$$
P(\mathcal{O})=\sum_{\text {all/ }} P(\mathcal{O} \mid Q) P(Q)
$$

-

$$
=\sum_{q_{1} \ldots q_{T}} \pi_{q_{1}} b_{q_{1}}\left(o_{1}\right) a_{q_{1} q_{2}} b_{q_{2}}\left(o_{2}\right) \ldots a_{q_{T-1} q_{T}} b_{q_{T}}\left(o_{T}\right)
$$

the Forward variable $\alpha_{t}(i)$

- The Forward variable is defined by
-

$$
\alpha_{t}(i)=P\left(o_{1} o_{2} \ldots o_{t}, q_{t}=S_{i}\right)
$$

- i.e., the probability of the prefix of the sequence of observations $o_{1} \ldots o_{t}$ until time t and being in state S_{i} at time t

the Backward variable $\beta_{t}(i)$

- The Backward variable is defined by
-

$$
\beta_{t}(i)=P\left(o_{t+1} o_{t+2} \cdots o_{T}, q_{t}=S_{i}\right)
$$

- i.e., the probability of the suffix of the sequence of observations $o_{t+1} O_{t=2} \ldots o_{T}$ until end of sequence t and being in state S_{i} at time t

the Delta variable $\delta_{t}(i)$

- The $\delta_{t}(i)$ variable is defined by
-

$$
\delta_{t}(i)=M A X_{q_{1} \ldots q_{t-1}} P\left(q_{1} \ldots q_{t-1} q_{t}, o_{1} \ldots o_{t-1} o_{t}\right)
$$

- i.e., the best score (highest probability) along the single path, at time t which accounts for the first t observations and ends in state S_{i}
- By far the most difficult of the three problems.
- We want to adjust the parameters of the model $\lambda=(A, B, \pi)$ to maximize the probability of observing the sequence in the model.
- There is no exact analytical solution to this problem.
- Both Problem 1 and Probem 2 have solutions given by algorithms that we presented in CS 1810. Those algorithms are exact and having computing time $O\left(N^{2} T\right)$.
- We can choose $\lambda^{\prime}=\left(A^{\prime}, B^{\prime}, \pi^{\prime}\right)$ such that $P\left(\mathcal{O} \mid \lambda^{\prime}\right)$ is locally maximal.
- We use the Baum-Welch Algorithm. This is an iterative algorithm. We iterate untill no improvement is possible. At that point we reached a local maxima.
For this iteration we are using a method for reesttimation of the HMM parameters.

the Xi variable $\xi(i j)$

- We first define a new variable ξ
- $\xi_{t}(i, j)=$ the probability of being in state S_{i} at time t and state S_{j} at time $t+1$, given the model and the observation sequence
- $\xi_{t}(i, j)=P\left(q_{t}=S_{i}, q_{t+1}=S_{j} \mid \mathcal{O}, \lambda\right)$
- From the definition of α and β variables we can write ξ as follows:
-

$$
\begin{gathered}
\xi_{t}(i, j)=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(o_{t+1}\right) \beta_{t+1}(j)}{P(\mathcal{O} \mid \lambda)} \\
=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(o_{t+1}\right) \beta_{t+1}(j)}{\sum_{i^{\prime}=1}^{N} \sum_{j^{\prime}=1}^{N} \alpha_{t}\left(i^{\prime}\right) a_{i^{\prime} j^{\prime}} b_{j^{\prime}}\left(o_{t+1}\right) \beta_{t+1}\left(j^{\prime}\right)}
\end{gathered}
$$

- The numerator is:
-

$$
P\left(q_{t}=S_{i}, q_{t+1}=S_{j}, \mathcal{O} \mid \lambda\right)
$$

- and the denominator is the normalization factor to give the probability:

$$
P(\mathcal{O} \mid \lambda)=\sum_{i^{\prime}=1}^{N} \sum_{j^{\prime}=1}^{N} \alpha_{t}\left(i^{\prime}\right) a_{i^{\prime} j^{\prime}} b_{j^{\prime}}\left(o_{t+1}\right) \beta\left(j^{\prime}\right)
$$

the Gamma variable $\gamma_{t}(i)$

- As $\gamma_{t}(i)$ is the probability of being in state S_{i} at time t given the observation sequence and model we have
-

$$
\gamma_{t}(i)=\sum_{j=1}^{N} \xi_{t}(i, j)
$$

- The expected number of times state S_{i} is visited or equivalently the expected number of transitions made from S_{i} is
$-$

$$
\sum_{t=1}^{T-1} \gamma_{t}(i)=
$$

$=$ the expected number of transitions from S_{i}

- Similarly,
-

$$
\sum_{t=1}^{T-1} \xi_{t}(i, j)=
$$

$=$ the expected number of transitions from S_{i} to S_{j}

Reestimating π_{i}

- A set of resonable reestimations for the parameters π, A, B are given as follows:
-

$$
\bar{\pi}=\gamma_{1}(i), 1 \leq i \leq N
$$

- i.e., the expected frequency (number of times) in state S_{i} at time $(t=1)$ is $=\gamma_{1}(i)$

Reestimating $A=\left\{a_{i j}\right\}$

O

$$
\bar{a}_{i j}=\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{t=1}^{T-1} \gamma_{t}(i)}
$$

- i.e., (expected number of transitions from S_{i} to S_{j})/ (exected number of transitions from S_{i})

Reestimating $B=b_{j}(k)$

-

$$
\bar{b}_{j}(k)=\frac{\sum_{t=1, o_{t}=v_{k}}^{T} \gamma_{t}(j)}{\sum_{t=1}^{T} \gamma_{t}(j)}
$$

- i.e., (expected number of times in state S_{j} observing observation symbol v_{k})/ (expected number of times in state S_{j})
- Let the current model $\lambda=(A, B, \pi)$
- Compute the above reestimation to get a new model $\bar{\lambda}=(\bar{A}, \bar{B}, \bar{\pi})$
- Then
(1) λ is a local optimum, i.e., $\lambda=\bar{\lambda}$, or
(2) $\bar{\lambda}$ is more likely that λ in the sense that

$$
P(\mathcal{O} \mid \bar{\lambda})>P(\mathcal{O} \mid \lambda)
$$

, i.e., we have found a new model $\bar{\lambda}$ from which the observation sequence is more likely to have been produced.

The maximum likelihood HMM estimate

- If we consider this reestimation, the final result of this reestimation procedure is called a maximum likelihood estimate of the HMM
- The Forward-Backward algorithm leads to a local maxima

Baum's Q-function and the Baum-Welch Theorem

- The reestimation formulas can be derived directly by maximization (using constrained optimization) of Baum's auxiiary function:
-

$$
\operatorname{Max}_{\bar{\lambda}} \mathcal{Q}(\lambda, \bar{\lambda})=\operatorname{sum}_{Q} P(Q \mid \mathcal{O}, \lambda) \log (P(\mathcal{O}, Q \mid \lambda))
$$

- Baum-Welch Theorem:

$$
\operatorname{Max}_{\bar{\lambda}}(\mathcal{Q}(\lambda, \bar{\lambda})
$$

implies that

$$
P(\mathcal{O} \mid \bar{\lambda}) \geq P(\mathcal{O} \mid \lambda)
$$

The EM Algorithm

- The reestimation procedure can be implemented as the Expectation-Maximization (EM) Algorithm due to Dempster, Laird and Rubin (1977)
- The E-step (Expectation) is the calculation of the Baum's auxiliary function $\mathcal{Q}(\lambda, \bar{\lambda})$
- The M-step (Maximization) is the maximization of $\bar{\lambda}$

The stochastic contraints

- The stochastic contraints for the model are automatically satisfied at each iteration:
-

$$
\sum_{i=1}^{N} \bar{\pi}_{i}=1,1 \leq j \leq N
$$

-

$$
\sum_{i=1}^{N} \bar{a}_{i j}=1,1 \leq j \leq N
$$

-

$$
\sum_{k=1}^{M} \bar{b}_{j}(k)=1
$$

Viewing the parameter optimization problem as an optimization problem

- We can solve the parameter estimation problem as a constraint optimization problem for

$$
P(\mathcal{O} \mid \lambda)
$$

under the stochastic contraints by using the Lagrangean multipliers method. It shows that P is maximized when the following hold:

Lagrangean multipliers for the solution of the optimization

$$
\pi_{i}=\frac{\pi_{i} \frac{\partial P}{\partial \pi_{i}}}{\sum_{k=1}^{N} \pi_{k} \frac{\partial P}{\partial \pi_{k}}}
$$

$-$

$$
\begin{aligned}
a_{i j} & =\frac{a_{i j} \frac{\partial P}{\partial a_{i j}}}{\sum_{k=1}^{N} a_{i k} \frac{\partial P}{\partial a_{i k}}} \\
b_{i}(k) & =\frac{b_{i}(k) \frac{\partial P}{\partial b_{i}(k)}}{\sum_{l=1}^{M} b_{i}(I) \frac{\partial P}{\partial b_{i}(l)}}
\end{aligned}
$$

- By appropriate manipulation of those formulas the right-hand sides of each equaltion can be ready converted to be identical to the right-sides of the EM algorithm reestimations.
- This shows that the reestimation formulas are indeed exactly correct at local optimal points of $P(\mathcal{O} \mid \lambda)$

