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Abstract

CpG dinucleotide clusters also referred to as CpG islands (CGIs) are usually located in the promoter regions of genes in
a deoxyribonucleic acid (DNA) sequence. CGIs play a crucial role in gene expression and cell differentiation, as such,
they are normally used as gene markers. The earlier CGI identification methods used the rich CpG dinucleotide
content in CGIs, as a characteristic measure to identify the locations of CGIs. The fact, that the probability of nucleotide
G following nucleotide C in a CGI is greater as compared to a non-CGI, is employed by some of the recent methods.
These methods use the difference in transition probabilities between subsequent nucleotides to distinguish between
a CGI from a non-CGI. These transition probabilities vary with the data being analyzed and several of them have been
reported in the literature sometimes leading to contradictory results. In this article, we propose a new and efficient
scheme for identification of CGIs using statistically optimal null filters. We formulate a new CGI identification
characteristic to reliably and efficiently identify CGIs in a given DNA sequence which is devoid of any ambiguities. Our
proposed scheme combines maximum signal-to-noise ratio and least squares optimization criteria to estimate the
CGI identification characteristic in the DNA sequence. The proposed scheme is tested on a number of DNA sequences
taken from human chromosomes 21 and 22, and proved to be highly reliable as well as efficient in identifying the CGIs.

Introduction
In the recent years, computational methods for processing
and interpreting vast amount of genomic data, generated
from genome sequencing, have gained a lot of scientific
interest. Genomic sequences such as deoxyribonucleic
acid (DNA) consist of biological instructions which are
crucial for the development and normal functioning of
almost all living organisms [1]. A DNA molecule has a
complex double helix structure that involves two strands,
consisting of alternating sugar and phosphate groups.
Attached to these sugar groups of each DNA strand are
one of the four chemical bases, namely, adenine (A),
thymine (T), guanine (G), and cytosine (C). A unit com-
prising of base, sugar, and phosphate is referred to as a
nucleotide. Hydrogen bonds between the nucleotides A
and T (similarly between nucleotides G and C) from the
opposite strands not only stabilize the DNA molecule, but
also make the two strands complimentary. Nucleotides
in a DNA strand exhibit short, recurring patterns (also

*Correspondence: r kakuma@encs.concordia.ca
1Department of Electrical and Computer Engineering, Concordia University,
1455 de Maisonneuve Blvd. West Montreal, QC H3G1M8, Canada
Full list of author information is available at the end of the article

called sequence motifs) that are presumed to have a bio-
logical function. Identification of these patterns helps
in understanding the biological information hidden in a
DNA sequence. A human DNA consists of about 3 bil-
lion nucleotides and completion of genome sequencing
of numerous model organisms has further proliferated
genomic databases. To completely decipher, the biologi-
cal information in a DNA sequence is a daunting task and
development of fast, efficient, and cost effective computa-
tional techniques for the same is a big challenge.

A sequence pattern that plays a crucial role in the
analysis of genomes is CpG Island (CGI). A typical CGI
consists high-frequency of CpG dinucleoetides, where
‘p’ refers to the phosphodiester bond between the adja-
cent nucleotides [1,2]. This bond is different from the
hydrogen bond that exists between C and G across
two strands in a DNA double helix. The length of a
CGI varies from a few hundred to a few thousand
base pairs (bp), but rarely exceeds 5000 bp. It is known
that CpG Islands (CGIs) occur in and around the pro-
moter regions of (50–60)% of human genes, including
most housekeeping genes (the genes which are essen-
tial for general cell functions) [3]. Gene is a stretch
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of DNA sequence which has biological information for
the synthesis of a protein. The promoter region in a
gene regulates its functionality [4-7]. Due to the asso-
ciation of CGIs with promoters, CGIs play an impor-
tant role in promoter prediction and consequently in the
prediction of genes [8,9]. CGIs also contribute signifi-
cantly in discovering the epigenetic causes of cancer. CGIs
located in the promoter regions of certain tumor sup-
pressor genes are normally unmethylated in healthy cells.
DNA methylation is a biochemical modification resulting
from addition of a methyl group to cytosine nucleotide
(C). In cancer cells, CGIs usually undergo a dense
hypermethylation leading to gene silencing as shown in
Figure 1. Owing to this, they can be used as candidate
regions for aberrant DNA methylation, for early detec-
tion of cancer [10-14]. For these reasons, identification of
CGIs has become indispensable for genome analysis and
annotation.

Despite their accuracy, experimental methods employed
by biologists for identification of CGIs are extremely time-
consuming, simply because of the enormity of genomic
data. On the other hand, computational methods can be
much more attractive for the identification of possible
CGIs. The results obtained from computational methods
can be used by biologists to validate and further enhance
the accuracy of identified CGI locations. There are several
computational methods [15-26] reported in the literature
for identification of CGIs in DNA sequences. In one of
the first computational attempts [15], a CGI is defined
as a DNA segment fulfilling the following three condi-
tions: (i) length of segment is at least 200 bp, (ii) G and C
contents are ≥ 50%, and (iii) observed CpG to expected
CpG ratio (o/e) is ≥ 0.6. Observed CpG is the num-
ber of CpG dinucleoetides in a segment and expected
CpG is calculated by multiplying the number of ‘C’s and
the number of ‘G’s in a segment and then dividing the
product by length of the segment. This method however
falsely identifies the other G and C rich motifs, e.g., Alu
repeats, as CGIs. In subsequent methods, these three con-
ditions were made more stringent in order to reduce false
identification at the expense of missing some true CGIs

[24]. Sophisticated methods utilizing two Markov chain
models [27,28], one for CGIs and the other for non-CGIs,
are proposed [2,25,26]. These two Markov models differ
in their respective model parameters which characterize
the difference in transition probabilities between succes-
sive nucleotides in CGIs and non-CGIs, respectively. In
these methods, a DNA segment is defined as CGI, if the
log-score [2] computed using Markov model for a CGI
is greater than that computed using Markov model for
a non-CGI. Consequently, the model parameters used
for CGIs and non-CGIs play a crucial role in identify-
ing the CGIs. However, different methods employing such
models from time-to-time produce inconsistent results.
Another criterion based on the physical distance distri-
bution of CpG dinucleoetides in a DNA segment has also
been proposed [23]. Methods based on this criterion are
dependent on nucleotide composition of a DNA sequence
being analyzed and suffer from low identification
specificity.

Recently, digital signal processing (DSP)-based algo-
rithms have gained popularity for the analysis of genomic
sequences since they can be mapped to numerical
sequences. Digital filters have successfully been employed
for identification of protein coding regions (exons) in
DNA sequences and hot-spots in protein sequences [29-
33]. Digital filters have also been used for identification
of CGIs with considerable success [25,26]. These methods
are similar to Markov chain methods but use digital fil-
ters to compute weighted log-score to identify CGIs. The
method proposed in [25] employs a bank of IIR low-pass
filters (about 40 filters, each with different bandwidth) to
identify the CGIs by looking at the weighted log-scores of
all the filters together. The CGI identification sensitivity
of this method is affected by the tradeoff between respon-
siveness of filter and stability of the output. Moreover,
this method may become computationally demanding as
it makes use of a large number of filters in the bank.
Another DSP based algorithm in [26] employs an under-
lying multinomial statistical model [34] to estimate its
Markov chain parameters followed by an FIR filter with
Blackman window to compute the weighted log-score.
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Figure 1 Difference between mythelated and unmythelated CpG Island.
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It is evident from above discussion that the CGI iden-
tification methods and more importantly the criteria
used therein play a crucial role in identifying CGIs. As
such, development of fast and efficient computational
methods with highly reliable CGI identification criteria
is a necessity. Statistically optimal null filters (SONF)
have been proven for their ability to efficiently estimate
short-duration signals embedded in noise [35]. In this
article, we propose a new DSP algorithm for identifi-
cation of CGIs using SONF which combines maximum
signal-to-noise ratio and least squares optimization cri-
teria to estimate the message signal, characterizing the
CGI, embedded in noise. Normally, the CGI identifica-
tion accuracy is a lot dependent on the Markov models
used and sometimes produces contrasting results. Also,
one of the main objectives of the article is to find a
uniform yet effective alternative CGI identification mea-
sure replacing the current measure based on transition
probabilities. In the proposed scheme, we have formu-
lated a simple basis function to be used in SONF which
characterizes the CGI. Our criterion is devoid of any
ambiguities associated with the choice of transition prob-
abilities used in some of the algorithms. The proposed
scheme is tested on a large number of already anno-
tated DNA sequences obtained from human chromo-
somes 21 and 22. It is shown that our scheme is simple
to implement and yet able to identify CGIs reliably and
efficiently.

The rest of the article is organized as follows: the
following section briefly describes a few existing DSP-
based algorithms for the identification of CGIs. In Section
“Proposed scheme”, the proposed SONF-based scheme
for identifying CGIs in DNA sequences is explained.
Results obtained from the proposed scheme are depicted
as well as tabulated in Section “Results and discus-
sion”. Finally, “Conclusion” section concludes the article
describing some of the significant features of the proposed
scheme.

Related study
In this section, we give a brief review of some of
the existing CGI identification methods as a prepara-
tory groundwork for the method to be proposed in
Section “Proposed scheme”.

Markov chain approach
In this method, a DNA sequence of length N, represented
as X = {x(n), x(n+1), . . . , x(n+N−1)} where each symbol
x(n) ∈ {A, C, T , G} is considered as a first-order Markov
chain [27] due to its conditional independence property,
i.e., the nucleotide occurring at the location (n − 1) does
not offer any information over and above that at n to pre-
dict the nucleotide occurring at (n + 1). In a CpG island,

the probability of transition from the nucleotide base C to
the base G is higher in comparison with that in a non-CGI.
Let the probability of transition from a nucleotide β to a
nucleotide γ in a CGI and a non-CGI be denoted as p+

βγ

and p−
βγ respectively. Tables 1 and 2 taken from [2] show

the transition probabilities for CGI and non-CGI Markov
models. These tables are derived from 48 putative CGIs in
human DNA sequences. Each row in the tables contains
transition probabilities from a specific nucleotide base to
each of the four bases. These transition probabilities p±

βγ

are calculated using

p±
βγ = n±

βγ∑
k∈{A,T ,G,C} n±

βk
(1)

where n±
βγ is the number of dinucleoetides βγ in a DNA

sequence. Naturally, every row in the tables adds up to
unity. As expected, in Table 1, which corresponds to the
CGI Markov model, the probability that a C is followed by
a G is very high as compared with that in Table 2.

The CGIs in the DNA sequence X are identified by
analyzing the windowed sequence Xn = {x(n), x(n +
1), . . . , x(n + L − 1)} of length L, and those obtained by
shifting the window by one position at a time. The proba-
bility of observing a windowed sequence assuming that it
belongs to a CGI is given by

P(Xn|CGI)
= P(x(n) . . . x(n + L − 1)|x(n − 1), CGI model)

=
L−1∏
i=0

p+
x(n−1+i)x(n+i) (2)

Similarly, the probability of observing this sequence
assuming it belongs to a non-CpG island region is

P(Xn|non-CGI)
= P(x(n) . . . x(n + L − 1)|x(n − 1), non-CGI)

=
L−1∏
i=0

p+
x(n−1+i)x(n+i) (3)

Table 1 Transition probabilities inside a CGI

p+
βγ

A C G T

A 0.180 0.274 0.426 0.120

C 0.171 0.368 0.274 0.188

G 0.161 0.339 0.375 0.125

T 0.079 0.355 0.384 0.182
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Table 2 Transition probabilities inside a non-CGI

p−
βγ

A C G T

A 0.300 0.205 0.285 0.210

C 0.322 0.298 0.078 0.302

G 0.248 0.246 0.298 0.208

T 0.177 0.239 0.292 0.292

If the value of P(Xn|CGI) > P(Xn|non-CGI), then, it is
concluded that the DNA sequence Xn belongs to a CGI.
Otherwise, it is more likely to be a non-CGI island. Alter-
natively, by formulating a log-likelihood ratio, given by

S(n) = 1
L

log
P(Xn|CGI)

P(Xn|non-CGI)
(4)

If S(n) > 0, the given DNA sequence is more likely to
belong to a CGI, and if S(n) < 0 the sequence probably
belongs to a non-CGI region.

IIR low-pass filter approach
Yoon and Vaidyanathan [25] have noted that the log-
likelihood ratio given in (4) can be expressed as:

S(n) = 1
L

log
L−1∏
n=0

p+
x(n−1)x(n)

p−
x(n−1)x(n)

= 1
L

L−1∑
i=0

y(n + i)

= y(n) ∗ have(n) (5)

where y(n) is a sequence representing the log-likelihood
ratio of a single transition given by

y(n) = log
(

p+
x(n−1)x(n)

p−
x(n−1)x(n)

)
(6)

and, have(n) is a simple averaging filter defined as

have(n) =
{

1/L, for − L + 1 ≤ n ≤ 0
0, otherwise.

(7)

Then, they proposed using a bank of M filters each
having different bandwidth, instead of using simply one
low-pass filter have(n). Specifically, the filter used in the

kth (k = 0, . . . , M − 1) channel has a transfer function
given by

Hk(z) = 1 − αk
1 − αkz−1 (8)

where 0 < α0 < α1 < · · · < αM−1 < 1. Since impulse
response of a filter in the bank is have(k) = (1−αk)α

k
k u(n)

more recent inputs are given larger weights than the past
ones in the averaging process of y(n). The filter bank con-
sists of 40 channels (M = 40), and the filter parameter αk
is chosen from 0.95 to 0.99 with an increment of 0.001.
The log-likelihood ratio obtained from the output of the
kth channel is given by

Sk(n) = y(n) ∗ hk(n) (9)

The values of Sk(n) obtained for all k and n are then used
to obtain a two-level contour plot. The bands correspond-
ing to Sk(n)>0 determine the locations of CGIs.

In this method, the use of filter bank increases the com-
putational overhead considerably. For fair comparison,
instead of a bank on M filters, we have used one pole fil-
ter with optimized parameter α = 0.99 to compare with
other methods (this reduces the number of computations
considerably).

Multinomial statistical model
This method by Rushdi and Tuqan [26] differs from the
previous method by the way the transition tables are
obtained and the type of digital filter used to calculate the
log-likelihood ratio. Instead of using (1) to obtain the tran-
sition probability tables, they are generated by comparing
the frequency of each dinucleotide with the one expected
under a multinomial model [34]. Transition probabilities
p±

βγ for the windowed sequence Xn are calculated using

p±
βγ = c±

βγ∑
k∈{A,T ,G,C}

c±
βk

(10)

where

c±
βγ = frequency±

βγ (n)

(frequency±
β (n))(frequency±

γ (n))
(11)

This method uses a FIR digital filter with variable coef-
ficients generated by Blackman window to calculate the
log-likelihood ratio S(n) given in (4). The locations with
S(n) greater than zero are the probable locations of CGIs.
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All of the above-mentioned methods rely on the tran-
sition probability tables to calculate log-likelihood ratio
used to identify CGIs. The methods [25,26] specifically
vary by the way y(n), obtained from the respective tran-
sition tables, are averaged. It is shown later in Section
“Results and discussion” that the choice of the transi-
tion tables may produces contrasting results. Hence, a
more reliable and efficient scheme that is devoid of these
transition tables is necessary for identifying CGIs.

Proposed scheme
In this study, we adopt the SONF approach, proposed
in [35], to efficiently identify CGIs in DNA sequences.
SONF is used for estimation of short duration signal,
Sn = {s(m)}, embedded in noise Rn = {r(m)} by com-
bining maximum signal-to-noise ratio and least squares
optimization criteria. The implementation of the twofold
optimization in SONF is shown in Figure 2, where an
instantaneous matched filter (IMF) is first used to detect
the presence of a short duration signal embedded in noise
by maximizing the signal-to-noise ratio over variable-time
observation interval m. The IMF output, In, is then scaled
by a locally generated function �n, by least squares (LS)
optimization procedure, to obtain the signal Yn, an esti-
mate of Sn. It has been shown that the SONF is equivalent
to a Kalman filter with a much simpler implementation
[35]. Also, SONF has the ability to track rapidly changing
signals leading to more practical processing of short-
duration signals [36,37]. Therefore, the proposed scheme
is expected to perform better in situations even if the CGIs
are of very short length of the order of 200 bp.

To be able to apply SONF approach to identify CGIs,
the DNA sequence X, of length N, is first mapped to an
appropriate binary numerical sequence XCG = {xCG(n)}.
A sliding window of length L is used to evaluate if each
of the windowed sequences, Xn = {xCG(m)}, where n =
1, 2, . . . , N − L + 1 and m = n, n + 1, . . . , n + L − 1, belong
to a CGI or not. Each of the windowed sequence Xn can
be expressed as

Xn = Sn + Rn (12)

Figure 2 Statistically optimal null filter.

where Sn = {s(m)} is a message signal corresponding to
a CGI and Rn = {r(m)} is a residual signal. Sn and Rn are
each of length L. Let � = {φ(m)} be a fixed binary basis
sequence of length L having some characteristic property
of CGI.

Now, the message signal corresponding to a CGI can
be expressed as Sn = Vn�, where Vn = {v(m)} and
� are sequences each of length L. The sequence Vn� is
obtained by multiplying the corresponding elements of Vn
and �. The sequence Vn is determined by minimizing Rn
in least square sense. Let the message signal be denoted
as Sn = {s(m)}. The objective of the proposed method
is to choose the basis sequence such that Vn resulting
from the optimization process has some discriminating
feature of indicating whether the associated sequence Xn
belongs to a CGI. The following subsections explain in
detail the steps involved in identification of CGIs in a DNA
sequence using SONF.

Numerical mapping of DNA sequences
As DNA sequences are alphabetical in nature, they need
to be mapped to numerical sequences in order to employ
the DSP techniques for DNA sequence analysis. There
are several mapping techniques reported in the litera-
ture. One of the earliest and a popular mapping is that of
Voss’s binary indicator sequences [38]. A DNA sequence
X can be mapped to a set of four digital signals by form-
ing four binary indicator sequences, namely, XA, XT , XG,
and XC . In each of these binary indicator sequences, ’1’
represents the presence and ’0’ absence of the correspond-
ing bases A, T, G, and C in X. For instance, considering
a DNA sequence X = {ATCCGAAGTATAACGAA}, the
binary indicator sequence corresponding to G, i.e., XG
can be expressed as XG = {00001001000000100}. Indica-
tor sequences for the remaining three nucleotides can be
represented in a similar fashion.

The problem of CGI identification deals with G and
C content in a DNA sequence. Hence, we define a new
indicator sequence XCG = {xCG(n)}, which indicates the
presence of the nucleotides C and G in the DNA sequence.
For example, the binary indicator sequence XCG of the
DNA sequence above is XCG = {00111001000001100}.

Choosing the basis sequence
In this study, we have noticed that the dinucleotides CC,
CG, GC, and GG occur more frequently in a CGI as com-
pared to a non-CGI. For this study, we have calculated
the occurrence of these four dinucleotides in the sequence
L44140 taken from the chromosome X of Homo sapiens.
The sequence L44140 is of length 219447 bp and has 17
CGIs whose locations are obtained from [39]. Figure 3
depicts the relative occurrence of the above four din-
ucleotides as compared to the remaining dinucleotides
(AA, AC, AG, AT, CA, CT, GA, GT, TC, TG, TT, and TA)
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Figure 3 Comparison of relative occurrence of dinucleotides in CGIs and non-CGIs of L44140.

in CGIs and non-CGIs of L44140. Here, the relative occur-
rence of a particular dinucleotide is equal to the number
of times that dinucleotide occurs in the sequence divided
by the sequence length. It is evident that the dinucleotides
CC, CG, GC, and GG occur more frequently in CGIs
whereas the other dinucleotides occur more frequently in
non-CGIs. This observation can also be inferred from the
transition probability tables (Tables 1 and 2) as the values
of p+

βγ are greater than p−
βγ , where β and γ are either G or

C. In Figure 3, the darker bars corresponding to the dinu-
cleotides CC, CG, GC, and GG are taller in CGIs, whereas
the darker bars corresponding to the other dinucleotides
are shorter. Hence, instead of just considering the differ-
ence in relative occurrence of CG, it is more productive
to consider the relative occurrence of the dinucleotides
CC, CG, GC, and GG to distinguish between a CGI and a
non-CGI.

Moreover, we have studied the difference in gap sizes
between the dinucleotides CC, CG, GC, and GG in CGIs
and non-CGIs of L44140. The shortest possible gap is of
size 0 when the dinucleotides are adjacent to each other.
Figure 4 shows the relative occurrence of gaps of various
sizes in a CGI and a non-CGI. Here, relative occurrence of
a particular gap size is equal to the number of times that
gap size occurs in the sequence divided by the sequence
length. Obviously, the gap of size 0 occurs more frequently
in a CGI as compared to that of a non-CGI. And, it is
found that the gap size in a non-CGI can go up to 40 where
as in CGIs the maximum gap size was found to be 19. It
can also be seen that the gaps of sizes 0, 1, and 2 occur
more frequently in a CGI and the gap sizes of 3 and greater
occur more frequently in a non-CGI. A gap of size 2 is
the largest gap which can distinguish between a CGI and
a non-CGI.
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Figure 4 Relative occurrence of various gap sizes in CGIs and non-CGIs of L44140.
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Based on the above observations, the basis sequence
which characterizes a CGI can be formulated as � =
{1100110011 . . . 001100}. The 1’s in � represent either
the nucleotide C or G. The 1’s always appear in pairs
where each pair representing one of the dinucleotide CC,
CG, GC, or GG. The 0’s in � form the gap between the
dinucleotides. A gap size of 2 is chosen between the dinu-
cleotides. This choice of � is also satisfies the basic criteria
of a CGI, i.e., at least 50% of the nucleotide content in a
CGI is due to C and G.

Now, in order to obtain the length of � (window size),
we have analyzed CGIs and non-CGIs of different lengths
for the relative occurrence of various gap sizes. Figure 5
shows the plot of � versus window size for various gap
sizes. Here, � is the difference of relative occurrence of
a particular gap in a CGI and a non-CGI for a fixed win-
dow length. It can be seen that � is maximum for gap size
0. As the window size increases � also increases before
it reaches a steady value. � is negative for gap sizes of 3
and greater signifying that the gap sizes of 3 and higher
are more probable in non-CGIs compared to CGIs. For
the gap size 2, � stabilizes for window sizes greater than
200. Larger the window size, larger the number of compu-
tations, and hence in the proposed method we have used
the length of � (window size) to be equal to 200.

IMF
The objective of IMF, which is the first stage of SONF
shown in Figure 2, is to detect the presence of the wave-
form � in the input sequence Xn. IMF is an improvement
over a matched filter, the difference being, in IMF optimal
SNR is repeatedly calculated at every sample m, over an
observation interval m ∈[ n, n + L − 1]. IMF takes Xn and
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Figure 5 Difference of relative occurrence of a particular gap in a
CGI and a non-CGI for different window lengths.

� as inputs and produces an output sequence In = {ι(m)}
where

ι(m) =
m∑

i=n
xCG(i)φ(i) (13)

for m = n, n + 1, . . . , n + L − 1. It can be seen that at
each sample m, ι(m) is calculated over a varying interval
i ∈[ n, m]. Note that, assuming ι(n − 1) = 0, ι(m) can also
be calculated using the recursive relation given by

ι(m) = ι(m − 1) + xCG(m)φ(m). (14)

The output ι(m) leads to an optimal detection of � at
each sample m, and can be expressed as

ι(m) = v(m)c(m) + r
′
0(m) (15)

where r′
0(m) is the residual signal in IMF output, and c(m)

is given by

c(m) =
m∑

i=n
φ2(i). (16)

The v(m) ∈ Vn in (15) is an unknown gain.

Least square optimization of the IMF output
The objective of the second stage in SONF is to determine
a sequence � = {λ(m)}, which when used to scale the
IMF output In, produces the SONF output, Yn, such that
Yn → Vn�. Here, Yn is an element wise product of Vn
and �. Yn is an estimate of Sn, which is the message signal
corresponding to CGI.

Let us consider the suboptimal case in which a sample
of the IMF output ι(m) in (15), when scaled by λ(m) =
φ(m)/c(m), generates

y(m) = v(m)c(m) + r
′
0
φ(m)

c(m)

= v(m)φ(m) + r0(m)

= s(m) + r0(m) (17)

where y(m) is an element of the SONF output, Yn. As we
desire optimal null filtering, i.e., y(m) = s(m), the residual
element, r0(m), needs to be entirely eliminated.

Before determining the optimal �n, corresponding to
ideal null filtering, we define the sequence Zn = {z(m)}
such that,

z(m) = xCG(m) − y(m)

= s(m) + r(m) − λ(m)ι(m) (18)

Ideally, y(m) = s(m) and from (18), zideal(m) = r(m).
Now, the optimal �n = {λopt(m)} is determined by min-
imizing the mean square error, E[ e2

λ(m)], with respect to
λ(m) where

eλ(m) = zideal(m) − z(m). (19)
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The optimal post IMF scaling sequence λopt(m)

obtained by carrying out the above mean square mini-
mization is [35]

λopt(m) = φ(m)

c(m) + 1/SNR
(20)

where SNR is the input signal-to-noise ratio (considering
r(m) to be noise).

In order to implement SONF, the value of the input
SNR should be known. To circumvent this problem, a sub-
optimal case, as shown in (17), is assumed considering
c(m) >> 1/SNR, leading to

λsubopt(m) → φ(m)

c(m)
(21)

It can be shown that as m increases, λsubopt(m) →
λopt(m) because the second term in the equation

λsubopt(m)

λopt(m)
= 1 + 1

(SNR)c(m)
(22)

approaches zero (as the value of c(m) progressively
increases with m). So, the value of initial SNR in (20) will
influence only the starting few samples in Yn.

The SONF can easily be implemented recursively using
the following equations [35]

ι(m) = ι(m − 1) + xCG(m)φ(m)

P(m) = P(m − 1) − P(m − 1)φ(m)φ(m)P(m − 1)

1 + φ(m)P(m − 1)φ(m)

λ(m) = P(m)φ(m)

y(m) = ι(m)λ(m) (23)

In this case of DNA analysis, one may choose the initial
value of the gain P(0) to be 1 and ι(0) = ι(1).

The proposed SONF-based CGI identification algo-
rithm for a DNA sequence of length N can now be
summarized as follows:

Initialization: Set the base location index n = 0.

• Step 1: Apply a rectangular window of length
L = 200 starting at the base location n of the DNA
sequence X to obtain the windowed sequence Xn.

• Step 2: Obtain the binary indicator sequence XCG for
the windowed sequence, Xn, from Step 1.

• Step 3: XCG from Step 2, along with the binary basis
sequence �, form the inputs to SONF. The
corresponding SONF output sequence, Yn, is
evaluated using the recursive relations given in (23),
by assuming P(0) = 1 and ι(0) = ι(1).

• Step 4: Compute the SNR power gain G(Xn), which
is the ratio of the variance of the SONF output, Yn, to
the variance of the corresponding input Xn.

• Step 5: Increment the value of n by 1, i.e., n = n + 1.
If n ≤ (N − L) go to Step 1, else go to Step 7.

• Step 6: Plot G(Xn) as a function of n + L and get its
upper envelope. The peaks in the resulting plot which
are above the threshold, η, indicate the locations of
CGIs identified in X.

• Step 7: Exit the algorithm.

Figure 6 shows the SONF implementation for better
understanding of the proposed approach. Figure 6a,b
shows an example of a CGI and a non-CGI with 80 bp.
Naturally, in Figure 6a there are greater number of ones.
Figure 6c,d shows the IMF output for a CGI and a
non-CGI, respectively. It can be seen that the IMF out-
put corresponding to a CGI progressively increases to a
greater value of 35 as compared to 6 of that of a non-
CGI. Figure 6e,f is the scaling functions for a CGI and a
non-CGI, respectively. They are obtained using the rela-
tion λ(m) = P(m)φ(m) in (23). Finally, Figure 6g,h shows
the estimated CGI characteristic in a CGI and a non-
CGI, respectively. The SONF output corresponding to a
CGI has greater amplitude as compared with that of a
non-CGI.

Prediction measures
The identification of CGIs can have four possible out-
comes; true positive (TP), true negative (TN), false posi-
tive (FP), or false negative (FN) as shown in Figure 7. Two
basic measures of determining the accuracy of prediction
are sensitivity (Sn) and specificity (Sp) [40]. Sensitivity,
given by

Sn = TP
TP + FN

(24)

and is defined as the proportion of CGIs that have been
predicted correctly. Whereas, specificity given by

Sp = TP
TP + FP

(25)

is defined as the proportion of the predicted CGIs that
are real. Sensitivity and specificity can take on values from
0 to 1. For a perfect prediction, Sn = 1 and Sp = 1. Neither
sensitivity nor specificity alone can provide a good mea-
sure of the global accuracy, because high sensitivity can be
achieved with little specificity and vice versa. A measure
that combines sensitivity and specificity values is called
the correlation coefficient (CC) and is given by

CC = (TP × TN) − (FN × FP)√
(TP + FN)(TN + FP)(TP + FP)(TN + FN)

(26)

The value of CC ranges from −1 to 1, where a value of
1 corresponds to a perfect prediction; a value of −1 indi-
cates that every CGI has been predicted as non-CGI, and
vice versa.
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Figure 6 SONF implementation: (a) An example of a CGI; (b) An example of a non-CGI; (c) IMF output for CGI; (d) IMF output for non-CGI;
(e) Scaling function for CGI; (f) Scaling function for non-CGI; (g) SONF output for CGI; and, (h) SONF output for non-CGI.
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Figure 7 Four possible outcomes of CGI prediction.

Another measure, called the performance accuracy
(Acc), used in our analysis is given by

Acc = TP + TN
TP + FP + TN + FN

(27)

In this article, we have evaluated the performance of dif-
ferent CGI identification methods at the nucleotide level.
For example, the value of TP is obtained by adding all the
nucleotides predicted to to true positive, and the other
outcomes are calculated in the similar manner. At the CGI
level, even if one nucleotide (or a threshold of a minimum
number of nucleotides) corresponding to a CGI is pre-
dicted to be true positive the entire CGI is assumed to be
predicted correctly.

Results and discussion
The proposed CGI prediction scheme is tested on sev-
eral genomic sequences of varying lengths taken from
the human chromosomes 21 and 22. More precisely, we
have used the three contigs, NT 113952.1, NT 113954.1,
and NT 113958.2 from chromosome 21, and the contig
NT 028395.3 from chromosome 22 for our analysis. All
the sequence data considered for this study are obtained
from the GenBank Database [39]. The performance of
the proposed scheme is compared with the other popu-
lar DSP-based approaches such as Markov chain [2], IIR
low-pass filters [25], and multinomial model [26].

First, a DNA sequence from human chromosome X
with the GenBank accession number of L44140 is ana-
lyzed for illustrative purpose. The sequence is of length
219447 bp and is already annotated, i.e., the locations of
its CGIs are already known and can be obtained from
[39]. The sequence L44140 is also used to obtain the val-
ues of threshold, η, used by the DSP-based methods being
compared in this article.

Figure 8 shows the comparative performance of CGI
prediction by the above-mentioned four approaches.
Figure 8a shows the performance of Markov chain
approach, where log-likelihood ratio S(n) is plotted
against base index of the sequence. The transition proba-
bility tables given in Tables 1 and 2 are used to calculate
S(n). All the base locations, n, with S(n) > 0 imply that
they are very likely to be a part of a CGI. A window

length of 200 bp is considered for the method. Markov
chain method is able to detect most of the CGIs in the
DNA sequence and it can be seen that the CGIs and non-
CGIs can reasonably be differentiated by looking at the
sign of S(n). However, one of the major drawbacks of this
method is the presence of a lot of false positives that falsely
categorize non-CGIs into CGIs.

Figure 8b shows the performance of IIR low-pass filter
approach where the log-likelihood ratio, S(n), is plotted
against base index of the sequence, n. The transition prob-
ability tables given in [25] are used to calculate S(n). For
fair comparison, instead of a bank on M filters, we have
used one pole filter with optimized parameter α = 0.99
for this method. All the base locations, n, with S(n) > 0
imply that they are very likely to be a part of a CGI. A win-
dow length of 200 bp is considered for the method. Similar
to the Markov chain method, this method also produces a
lot of false positives affecting the prediction accuracy.

Figure 8c shows the prediction of CGIs using the multi-
nomial model in [26]. An underlying multinomial statis-
tical model is employed to estimate the Markov chain
model parameters that result in the transition probability
tables given in [26]. A Blackman window of length 100 bp
is employed for calculating the filtered log-likelihood
ratio. The Blackman window gives larger weights for cen-
tral samples of the window, thus reducing the edge effects.
Windows with the positive filtered log-likelihood ratio are
considered to be a part of a CGI. This method shows con-
siderably high false positives making the CGI prediction
unreliable.

Figure 8d shows performance of the proposed SONF
scheme in predicting the CGIs. Unlike the above-
mentioned methods, our scheme utilizes the binary basis
sequence, �, instead of the probability transition tables.
The proposed scheme first maximizes SNR of the output
at each time instant using IMF, then it further enhances
the estimated signal using least-square optimization crite-
rion, to estimate the presence of � in the input windowed
DNA sequence. A window size of 200 is used for the
proposed method. Effectiveness of the proposed scheme
is clearly visible in Figure 8d, which depict more contrast-
ing peaks as compared to the other three approaches.
These contrasting peaks make the identification
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Figure 8 CGI prediction in the DNA sequence L44140 using (a)
Markov chain method; (b) IIR Filter method; (c) Multinomial
model; (d) SONF scheme.
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Figure 9 Relation between the performance Acc and threshold.

process comparatively easier resulting in less number of
false positives.

It can be seen from Figure 8 that the default threshold
on η = 0 produces a lot of false positives for the methods
using transition probability tables. The optimal thresh-
old values for the methods is obtained by calculating the
prediction Acc for varying thresholds for each method
(Figure 9). The optimal values of thresholds obtained for
the Markov chain method, IIR filter method, and the
proposed SONF approach are 0.1, 0.05, and 0.6, respec-
tively. The actual locations of the CGIs, obtained from
NCBI website, present in the sequence L44140 are rep-
resented by red horizontal spots in Figure 8. Figure 10
is receiver operating characteristic (ROC) curves plotted
for the four methods. It can be seen that the proposed
approach has better overall performance for the sequence
L44140 with the area under the curve 0.7460. The Markov
chain method is next with the area under the ROC curve
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Figure 11 CGI prediction in the first 15000 bps of L44140 using (a) Markov chain method; (b) IIR filter method; (c) multinomial model; (d)
SONF scheme. Binary decision based on respective threshold is plotted against the base location index.

0.6072. The area under the curve for IIR filter method is
0.3106. It can be seen that the multinomial model method
has the least area under the ROC curve. The dismal per-
formance of the multinomial model does not indicate
anything about the method in itself but merely implies

that the transition probability tables used may not be
appropriate for the example considered.

We have evaluated the time complexity of the proposed
method using the tic-toc function in MATLAB. Taking
the necessary precautions (such as all applications except

Table 3 Comparison of different methods for identification of CGIs

Contig. Performace Methods

Markov IIR Filter Multinomial CpGCluster SONF

Chain model

NT 113952.1 Sn 0.8466 0.8656 0.4524 0.5046 0.8677

Length = 184355 Sp 0.8728 0.8320 0.2833 0.9995 0.4457

CC 0.8621 0.8180 0.3609 0.6941 0.6192

Acc 0.9955 0.9848 0.4948 0.9778 0.9878

NT 113954.1 Sn 0.3285 0.2226 0.0055 0.2986 0.5420

Length = 129889 Sp 0.3082 0.2585 0.0021 0.9946 0.2094

CC 0.3152 0.2369 0.0040 0.4381 0.4382

Acc 0.9940 0.9940 0.4989 0.9690 0.9894

NT 113958.2 Sn 0.4555 0.3561 0.2938 0.2716 0.8852

Length = 209483 Sp 0.4652 0.4439 0.0202 0.9994 0.2880

CC 0.4527 0.3899 0.0119 0.4996 0.4954

Acc 0.9849 0.9845 0.4960 0.9532 0.9705

NT 028395.3 Sn 0.5440 0.4200 0.0000 0.4489 0.8789

Length = 647850 Sp 0.8233 0.7590 0.0000 0.9947 0.4534

CC 0.6667 0.5616 -0.0116 0.9753 0.6267

Acc 0.9945 0.9932 0.8710 0.9532 0.9887
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MATLAB were closed, a fresh session of MATLAB was
started for each task, and MATLAB was warmed up with
the code, i.e., the first run of the code was ignored), the
CPU time for processing a fixed length of sequence, the
Markov chain method was found to be the least followed
by SONF, IIR and multinomial approaches with an addi-
tional CPU time of 1.29%, 1.78%, and 1.82%, respectively.
This difference is not substantial considering today’s com-
puting resources.

Figure 11 shows the performance of the four methods
for the prediction of CGIs in the first 15000 bps of L44140.
The red horizontal lines are the actual locations of CGIs.
The blue binary decision curve depicts the locations of
the predicted CGI by the methods. As can be seen from
Figure 11c, the multinomial-based approach fails to detect
the CGI located between base pairs 3095 and 3426 as
opposed to other three methods implying that the proba-
bility transition parameters used for the CGI identification
play a crucial role. Hence, it is important to have a CGI
identification characteristic which is devoid of any ambi-
guity with the choice of different probability transition
tables available. The binary basis sequence � in the pro-
posed scheme successfully identifies the CGIs and can be
reliably used as CPG identification characteristic.

Table 3 presents the summary of performance measures
Sn, Sp, CC, and Acc obtained for the analysis of four
contigs NT 113952.1, NT 113954.1, NT 113958.2, and
NT 028395.3. The performance of the proposed scheme
is also compared with that of CpGCluster [23], which
uses the distance between CpG dinucleotides (and not
the transition probability tables) for identifying CGIs. The
proposed approach has the highest values of Sn for all the
contigs (shown in bold) and has the highest values of CC
for the contigs NT 113954.1 and NT 113958.2. The per-
formance accuracy is also quiet high, consistently above
97% which is a good sign. This shows that the proposed
method is reliable and the proposed binary basis sequence
� is an alternative CGI identification characteristic. The
multinomial method did not identify any of the CGIs in
the contig NT 028395.3 and hence its Sn and Sp values
are zero. The corresponding Acc value is high because the
method predicting most of the true negatives correctly.
The contig NT 028395.3 has short CGIs of the order of
200 bps and the proposed approach with better sensitivity
is capable of identifying them.

Conclusion
In this article, a new DSP-based technique using SONFs
is proposed for the prediction of CGIs in DNA sequences.
A novel CPG identification characteristic is presented in
the form of a binary basis sequence which is shown to
identify CGIs reliably. It has also been shown that the
performance of the existing methods which use discrimi-
nating transition probability tables for CGIs/non-CGIs is

not consistent. The prediction accuracy of these meth-
ods are highly dependent on the training data used to
obtain the transition probabilities of CGIs and non-CGIs.
The inability of finding a unique CGI identification char-
acteristic has resulted in failure in predicting many of
the CGIs. This article makes an attempt to present a
unique CGI identification characteristic which does not
require any training. Furthermore, the ability of SONF
to track short duration signals is exploited in identifying
the CGIs in DNA sequences. SONF combines maximum
signal-to-noise ratio and least squares optimization cri-
teria to estimate the CGI identification characteristic in
the DNA sequence. The performance of the proposed
technique is tested on four randomly chosen contigs in
chromosomes 21 and 22 of human beings. The simula-
tion results comparing the performance of the proposed
technique with the other three DSP-based CGI predic-
tion techniques have shown that the proposed approach
enjoys superior prediction accuracy in terms of sensi-
tivity. The overall predicting accuracy of the proposed
approach is also consistently above 97% and is comparable
to that of the Markov chain method making it a reliable
method.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This study was supported in parts by the Natural Sciences and Engineering
Research Council (NSERC) of Canada and in part by the Regroupement
Strategic en Microelectronique du Quebec (ReSMiQ).

Author details
1Department of Electrical and Computer Engineering, Concordia University,
1455 de Maisonneuve Blvd. West Montreal, QC H3G1M8, Canada.
2Department of Electrical Engineering and Computer Science, University of
Toledo, MS 308, 2801 W. Bancroft St., Toledo, OH 43606, USA.

Received: 16 February 2012 Accepted: 23 July 2012
Published: 29 August 2012

References
1. H Lodish, A Berk, S Zipursky, P Matsudaira, D Baltimore, J Darnell,

Molecular Cell biology. (Scientific American, New York,1995)
2. R Durbin, S Eddy, A Krogh, G Mitchison, Biological sequence analysis.

(Cambridge University Press, Cambridge,1998)
3. F Antequera, A Bird, Number of CpG islands and genes in human and

mouse. Proc. Natl Acad. Sci. USA. 90(24), 11995–11999 (1993)
4. F Antequera, A Bird, CpG islands as genomic footprints of promoters that

are associated with replication origins. Curr. Biol. 9, 661–667 (1999)
5. I Ioshikhes, M Zhang, Large-scale human promoter mapping using CpG

islands. Nat. Genet. 26, 61–63 (2000)
6. F Antequera, Structure, function, evolution of CpG island promoters. Cell.

Mol. Life Sci. 60(8), 1647–1658 (2003)
7. S Saxonov, P Berg, D Brutlag, A genome-wide analysis of CpG

dinucleotides in the human genome distinguishes two distinct classes of
promoters. Proc. Natl Acad. Sci. USA. 103(5), 1412–1417 (2006)

8. F Larsen, G Gundersen, R Lopez, H Prydz, CpG islands as gene markers in
the human genome. Genomics (San Diego, CA). 13(4), 1095–1107 (1992)

9. Y Wang, F Leung, An evaluation of new criteria for CpG islands in the
human genome as gene markers. Bioinformatics. 20(7), 1170 (2004)

10. A Bird, DNA methylation patterns and epigenetic memory. Genes Dev.
16, 6–21 (2002)



Kakumani et al. EURASIP Journal on Bioinformatics and Systems Biology 2012, 2012:12 Page 14 of 14
http://bsb.eurasipjournals.com/content/2012/1/12

11. J Herman, S Baylin, Gene silencing in cancer in association with promoter
hypermethylation. New Engl. J. Med. 349(21), 2042 (2003)

12. J Issa, CpG island methylator phenotype in cancer. Nat. Rev. Cancer. 4(12),
988–993 (2004)

13. R Illingworth, A Kerr, D DeSousa, H Jorgensen, P Ellis, J Stalker, D Jackson,
C Clee, R Plumb, J Rogers, A novel CpG island set identifies tissue-specific
methylation at developmental gene loci. PLoS Biol. 6, e22 (2008)

14. L Heisler, D Torti, P Boutros, J Watson, C Chan, N Winegarden, M Takahashi,
P Yau, T Huang, P Farnham, CpG Island microarray probe sequences
derived from a physical library are representative of CpG Islands
annotated on the human genome. Nucleic Acids Res. 33(9), 2952 (2005)

15. M Gardiner-Garden, M Frommer, CpG islands in vertebrate genomes. J.
Mol. Biol. 196(2), 261 (1987)

16. E Rouchka, R Mazzarella, David J States, Computational detection of CpG
islands in DNA, Report: WUCS-97-39 (1997 )

17. P Rice, I Longden, A Bleasby, EMBOSS: the European molecular biology
open software suite. Trends Genetics. 16(6), 276–277 (2000)

18. L Ponger, D Mouchiroud, CpGProD: identifying CpG islands associated
with transcription start sites in large genomic mammalian sequences.
Bioinformatics. 18(4), 631 (2002)

19. N Dasgupta, S Lin, L Carin, Sequential modeling for identifying CpG island
locations in human genome. IEEE Signal Process. Lett. 9(12), 407–409
(2002)

20. P Luque-Escamilla, J Martı́nez-Aroza, J Oliver, J Gómez-Lopera, R
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