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ABSTRACT Score-based measures of molecular-sequence
features provide versatile aids for the study of proteins and
DNA. They are used by many sequence data base search
programs, as well as for identifying distinctive properties of
single sequences. For any such measure, it is important toknow
what can be expected to occur purely by chance. The statistical
distribution of high-scoring segments has been described else-
where. However, molecular sequences will frequently yield
several high-scoring segments for which some combined as-
sessment is in order. This paper describes the statistical
distribution for the sum of the scores of multiple hih-scoring
segments and illustrates its application to the identification of
possible transmembrane segments and the evaluation of se-
quence similarity.

The study of molecular-sequence data can be assisted by
statistical methods of sequence analysis. Among the aims of
such study is the discovery of patterns relevant to genomic
organization, nucleic acid processing, protein folding, and
biochemical function as well as their evolutionary develop-
ments. A region of unusual amino acid composition in a
protein sequence may correlate with a specific biological
function. Similarly, the conservation over evolutionary time
ofsegments shared by different proteins may provide clues to
structure and function.
Among the tools for detecting interesting regions in protein

sequences are score-based methods. These assign appropri-
ate positive numerical values to amino acids likely to be
found within the type of region sought and negative values to
residues unlikely to occur. Since scores permit differentiation
between residues, they engender more sensitive analyses
than do measures that consider only simple matching. Scores
have been used to locate transmembrane or significantly
hydrophobic segments, DNA-binding domains, and regions
of concentrated charge (1). They are also employed to
identify similar regions shared by two or more protein or
DNA molecules and are at the core of many sequence data
base search programs (2-4).
A crucial question for any given score-based or other

measure applied to molecular sequences is what can be
expected to occur purely by chance. Empirical statistical
studies can be based upon sequence data collections (1, 5-8)
or upon permutations of sample sequences (9, 10). In addi-
tion, analytic statistical results can afford calculable criteria
for the evaluation ofsequences and can elucidate the function
of the parameters in the measures to which they apply (11).
They provide means for recognizing outliers, for developing
contrasting sequence classifications, and for comparing dif-
ferent data sets in a consistent manner.
The greatest limitation on the analytic approach is the

difficulty of deriving statistical distributions for any but the

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked "advertisement"
in accordance with 18 U.S.C. §1734 solely to indicate this fact.

simplest sequence measures. Among those that have yielded
to analysis are ones based on runs of a given residue type,
allowing for a specified number or proportion of mismatches
(12-14). More recently, a theory has been developed for
characterizing unusual sequence patterns, defined with ref-
erence to general scoring systems (15-18). Scores may be
based on residue biochemical or physical properties or, in the
case of sequence comparison, on residue similarities. Spe-
cifically, the theory describes the asymptotic extremal dis-
tribution ofhigh aggregate segment scores as well as the letter
composition of high-scoring segments.

In this paper we consider several natural extensions of
score-based measures. An important such extension is the
sum of the r greatest segment scores. This measure is
appropriate when there may be several distinct segments of
a given type within a protein or DNA sequence (e.g., trans-
membrane segments). Also, for sequence comparisons, the
existence of insertions or deletions can break an alignment
into several pieces, and the sum of their scores can be an
appropriate measure of local sequence similarity. From this
consideration there arises the problem of "consistency" for
high-scoring segment pairs: the requirement that multiple
pairs be combinable into a single "gapped" alignment. We
discuss below how this constraint affects the distribution of
the sum statistic. The use of these statistics will be illustrated
with several examples.

The Statistical Theory for High-Scoring Segments

Given a molecular sequence, we assume that scores are
assigned to the various sequence elements and study the
statistical behavior of the segment (of whatever length) with
greatest aggregate score. In this section we review briefly the
theory for such maximal-segment scores (15-18). The basic
themes ofthis theory are visible in the various extensions that
follow.

In the simple "independence" random sequence model we
employ, the elements ofa sequence are chosen independently
from an alphabet of a letters with respective probabilities p1,
... ' Pa. A DNA sequence, for example, would have a = 4,
and a protein sequence using the standard alphabet would
have a = 20. Theory exists for the more complicated case of
Markov-dependent sequences but will not be discussed here
(17). A score si is assigned to each type of letter. For proteins
these scores may be based, for example, on physicochemical
or structure-related properties such as charge, size, hydro-
phobicity, and helix-forming potential. The maximal segment
of a sequence is defined as that contiguous string of letters
with greatest aggregate score. The random distribution for
the score S of this segment can be expressed by using three
parameters, which are described below.

Abbreviations: p.d.f., probability density function; PIR, Protein
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A necessary assumption for the following theory is that the
expected score per letter j,pisi be negative. [Scores based on
likelihood ratios (15) always satisfy this condition.] Were the
expected score positive, the maximal segment would always
tend to be virtually the entire sequence, so such a scoring
system would not be of much use for identifying unusual
regions. The existence of at least one positive score along
with the previous condition implies that there is always a
unique positive solution x = A to the equation Y2ipiesix = 1.
The parameter A may be thought of as a natural scale for the
scoring system employed.
A second parameter K, for which an explicit but more

complex formula is available, is also readily calculated from
the scores si and their background probabilities pi (15-18).
The final relevant parameter is the length N of the random
sequence from which the maximal segment is drawn. The
statistical theory is then most simply expressed in terms of
the normalized score S' = AS - ln KN. For large N, the tail
probability (Prob) that S' is greater than or equal to x is well
approximated by the formula

Prob(S' x) 1 - exp(-e-X). [1]

For sequence comparison, the theory has a parallel devel-
opment. Scores sij are now assigned not to individual letters
but to pairs of letters. Given two sequences, the maximal-
segment pair is simply that pair ofequal-length segments, one
from each sequence, which when aligned have maximal
aggregate score S. The expected score per residue pair must
still be negative, and the formulas for A and K are the same
as before. The main difference is that the "search space size"
parameter N becomes the product of the lengths of the two
sequences being compared. A number of conditions must
hold for Prob(S' > x) to converge to formula 1 for largeN (A.
Dembo, S.K., and 0. Zeitouni, unpublished data), but this
formula is always conservative-i.e., it provides an upper
bound on the desired probability.
For single-sequence protein analysis, scores appropriate

for the detection of transmembrane segments and DNA-
binding domains have been described (1, 6, 19). For sequence
comparison, a wide range of scoring systems have been
proposed (11, 20-28), and segment-pair scores underpin the
BLAST data base search programs (2, 29, 30). These are
examples where the basic theory finds direct application. In
many cases, however, more sophisticated scoring methods,
such as those studied in this paper, are appropriate.

The Statistical Theory for Multiple High-Scoring Segments

Sometimes a single molecule will contain multiple regions
with a common property of biological interest, or two mol-
ecules will share several quite similar regions. For example,
a protein may have several distinct transmembrane segments
or regions of concentrated charge. Two proteins may share a
number of regions of conserved secondary structure, sepa-
rated by loops of variable length and composition. When this
is the case, seeking the single highest-scoring region can
discard much valuable information. We therefore consider
the scores S,, ... , S, of the r highest-scoring distinct
segments. Statistics for these random variables are most
conveniently written using the normalized scores S' = ASk-
In KN. For large N, the joint probability density function
(p.d.f.) for S',.. ',Sr is well approximated by the formula

f(x1, * * *, xr) = exp Qex Xk) 9 [2]

where xl 2 X2 - * * * 2 Xr. The distribution of any function of
the Sk may be calculated from this distribution. The simplest

application is to calculate the tail probability that S' is greater
than or equal to x; integration yields

r-1 ek
Prob(S 2 x) 1 - exp(-e-x) >je

k=O k! [3]

which is a generalization of formula 1.
Of greater interest and utility is the distribution of the sum

of the r highest normalized scores Tr = Sj + * * * + S5. From
formula 2 and some algebraic manipulation, one may show
that for large N, the p.d.f. for Tr approaches

e-t co

f(t) = r!(r-2)! I yr-2exp(-e(yt)/r) dy. [4

All moments of this distribution may be calculated by means
of Laplace transforms. The mean is given by r(1 + y - Yk=1
l/k), where y 0.577 is Euler's constant, and is well approx-
imated by r(1 - ln r) - 1/2. The variance is r2(r2/6 - k=l
1/k2) + r, which is approximately 2r - 1/2.
To obtain the tail probability that Tr 2 x, one must integrate

Eq. 4 for t from x to infinity. This double integral is easily
calculated numerically, and a program for the purpose in the
C programming language is available from the authors. In the
limit of large x, this tail probability behaves as

e-xxr-1
Prob(Tr 2 x) [5]

Applications of these results will be given below.

Consistendy Ordered Segment Pairs in Sequence AlInments

Two proteins may share distinct, homologous domains that
need not retain the same relative order. More often, however,
separate high-scoring segment pairs arise from insertions or
deletions within a matching region. In the context ofpairwise
sequence comparison, one may wish to exclude the former
possibility and consider only the latter; this simultaneously
excludes from analysis cases that do not fit the biological
model and increases the statistical significance of those
segment pair sets that do.

Requiring that a collection ofhigh-scoring segment pairs be
consistent with a single alignment including gaps imposes a
certain "geometry" on the pairs that so far has not been taken
into account. For a given high-scoring segment pair i, let (xi,
y,) indicate the midpoints of its constituent segments within
their respective sequences. A necessary condition for com-
bining several segment pairs into a single consistent align-
ment is that for any two pairs i and j, xi < xj if and only if y,
< yj. We will call a set of segment pairs "consistently
ordered" if it satisfies this condition.
The random variable Tr from the previous section can be

written as A(1.=1 Sk) - ln Kr - ln N'. The last term may be
understood as correcting for the N' different possible sets of
starting positions for the r segment pairs whose scores are the
Sk. (Remember that for pairwise sequence comparison, N is
the product of the lengths ofthe sequences being compared.)
If we require a set of r segment pairs to be consistently
ordered before allowing their scores to be combined, we
effectively divide the size ofthe possible solution space by r!.
Therefore, if T* is the greatest value attainable as the sum of
normalized scores Sk from r distinct and consistently ordered
segment pairs, T* + ln r! has a p.d.f. approaching that of Eq.
4 for large N.

This analysis can be extended to more restrictive con-
straints on the relationship of combined segment pairs.
Between pairs, for example, one may allow gaps within each
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Table 1. High-scoring segments of the D. virilis sevenless protein (34) [Protein Identification
Resource (PIR) code A35774] with their associated scores and P values

Score P value
Segment Positions (normalized score) Segment Sum

LVLAIIAPAAIVSSCVLALVLV 2141-2162 67 (4.4) 0.012 0.012
FLVTGHGGISTILIANLLLLLLLSL 116-140 55 (2.5) 0.080 0.0035
ISAPIIVALLAL 466-477 38 (-0.2) 0.71 0.0053
Segment scores are based on the transmembrane scores from ref. 1.

sequence of only some maximum size. The appropriate
statistics then depend upon the extent to which the space of
possible solutions is reduced.
The measure presented in this section combines gaps and

scores in a natural manner. One drawback of this measure,
however, is that so long as a gap is permitted at all, no
premium is placed on a short as opposed to a long one. A
statistical problem that remains open is the random distribu-
tion of scores from optimal alignments that include gaps and
for which length-dependent gap costs are assessed (4, 31).
While numerical studies have been conducted on the statis-
tics of such scoring systems (7, 8), they have resisted
complete analysis to date.

Further Results Involving Consistent Ordering

One question similar in spirit but different in detail from those
considered above is how many distinct segments can be
expected with score at least x. This question is most easily
answered by using the composite parametery = KNe-Ax. For
large N and for x sufficiently large that y is not much greater
than 1, the number ofdistinct segments whose score is at least
x is then approximately Poisson distributed with parameter y
(15-18). In other words, the probability of observing exactly
k such segments is approximately e Yyk/k!. The probability
of observing at least r segments with score at least x is
calculated by summing this quantity for k from r to infinity.

In the case ofsequence alignments, we now wish to impose
the additional requirement of consistent ordering. The most
natural question concerns the probability that there are at
least r distinct and consistently ordered segment pairs all with
score at least x. The desired probability arises if each term of
the infinite sum is multiplied by the probability that a set of
k segment pairs contains a consistently ordered subset of size
at least r. For largeN this probability can be seen to approach
Rk,r/k!, where Rk,r is the number of permutations of the
integers 1 to k that contain an increasing subsequence of
length at least r. Thus, the formula for the desired probability
becomes

e
ykRk,r

k=r k!2 [6

To employ formula 6 effectively, one must be able to
calculate Rk,r for at least the first several k values greater than
or equal to r. When r c 4, general formulas are available for
Rk,r (32). Moreover, for all r, various combinatorial facts
about permutations (33) suffice to prove that Rr,r = 1; Rr+l,r
= r2 + 1, and Rr+2,r = (r4 + 2r3 + r2 + 2r + 6)/2. Specific
but increasingly complicated formulas may be derived for
successive terms. However, the first three terms just given
should be sufficient for most purposes.

Examples

To illustrate the use of sum statistics, we first consider the
sevenless protein from the fruit fly Drosophila virilis (34).
This molecule is a tyrosine kinase receptor required for
embryogenesis of the eye; it is known to have one and is
suspected to have two transmembrane domains (35). We
analyzed the molecule for transmembrane segments, using
scores derived for this purpose by Karlin and Brendel (1).
The three highest-scoring segments of the protein are shown
in Table 1, arranged in decreasing order of score. For this
analysis, the relevant statistical parameters may be calcu-
lated as A = 0.159, K = 0.21, and N = 2594. The single
highest-scoring segment, consisting of residues 2141-2162,
has a normalized score of 4.4, which by formula 1 corre-
sponds to a P value of 0.012. The second highest normalized
score (forresidues 116-140) is 2.5, correspondingto aP value
of 0.08. Neither of these segments in isolation may be
considered significant at the 99% level. However, as shown
in Table 1, when analyzed in unison, the P value for the sum
of their scores drops to 0.0035. Successive high-scoring
segments (i.e., those other than the top-scoring two) do not
improve the overall result. The two segments identified as
statistically significant by this method are the putative trans-
membrane domains described in the original paper (34).
As a second example, we analyze the human serotonin

receptor (36) for transmembrane segments. This molecule is
a member of the large family of guanine nucleotide-binding
protein-coupled receptors, which generally contain seven
transmembrane segments, accounting for roughly half of the
complete protein. The large proportion of hydrophobic res-
idues within these proteins render concentrations of such

Table 2. High-scoring segments of the human serotonin receptor (36) (PIR code S07343), with
their associated scores and P values

Score P value
Segment Positions (normalized score) Segment Sum

VITSLLLGTLIFCAVLGNACVVAAIAL (37) 37-63 (62) 66 (3.5) 0.031 0.031
LGIIMGTFILCWLPFFIVALVL (345) 346-367 (366) 65 (3.4) 0.034 0.0036
ALISLTWLIGFLISI (152) 154-168 (177) 46 (1.2) 0.26 0.0019
IYSTFGAFYIPLLLMLVL (191) 196-213 (216) 41 (0.6) 0.42 0.0011
LIGSLAVTDLMVSVLVLPMAAL (74) 74-95 (98) 38 (0.3) 0.53 0.00064
LFIALDVLCCTSSILHLCAIAL (110) 111-132 (134) 31 (-0.5) 0.81 0.00056
LLGAII (378) 379-384 (402) 26 (-1.1) 0.95 0.00061

Segment scores are based on the transmembrane scores from ref. 1. Next to the position numbers
representing the extent of each high-scoring segment are given in parentheses those for the corre-
sponding putative transmembrane segment as specified in SWISS-PROT (38).

Evolution: Karlin and Altschul
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Table 3. High-scoring segment pairs, with their associated scores and P values, from a comparison of the chicken
gene X protein (39) (PIR code DXCH) and the fowlpox virus antithrombin III homolog (40) (PIR code WMVZF3)

Score P value

Segment pair Positions (normalized score) Segment pair Sum
VYLPQMKIEEKYNLTSVLMALGMTDLF 125-151
YLP E L L G DLF 52 (7.6) 4.7 x 10-4 4.7 x 10-4
LYLPKFELEDDVDLKDALIHMGCNDLF 44-70

SANLTGISSAESLKISQAVHGAFMELSEDGIEMAGST 154-190
S L GIS L I E G E A T 49 (6.7) 1.2 x 10-3 4.2 x 10-6
SGELVGISDTKTLRIGNIRQKSVIKVDEYGTEAASVT 72-108

RADHPFLFLIKHNPTNTIVYFGRY 206-229
A PF FL T G 46 (5.8) 3.1 x 10-3 5.9 x 10-8

KANVPFMFLVADVQTKIPLFLGIF 123-146

Segment pair scores are calculated using the PAM-120 scoring matrix (11, 20). Amino acid identities are echoed on the
central line of each alignment.

amino acids more difficult to distinguish from chance (cf. ref.
37).
Using the same transmembrane scores as before (1), the

seven best segments of the human serotonin receptor are
shown in Table 2, arranged in decreasing order of score. Here
the relevant parameters are A = 0.114,K = 0.14, andN = 421.
The single highest-scoring segment consists ofresidues 37-63
and has a normalized score of 3.5, corresponding by formula
1 to a P value of 0.031. Therefore, neither this nor any of the
other high-scoring segments may be considered, in isolation,
particularly surprising. When several of the highest-scoring
segments are analyzed in unison, however, the situation
changes. As shown in Table 2, P values for the sum of the r
highest segment scores continue to drop until r = 6, at which
point the cumulative normalized score of8.4 has a probability
less than 6 x 10-4 of having occurred by chance. Further
segments do not improve the overall result. It should be noted
that the statistics for sums of high segment scores described
above are valid only in the limit of large N. For a protein as
short as the one in this example, they are inaccurate for r >
2. Nevertheless, even the sum ofjust the two highest segment
scores provides good evidence that one is dealing with a
multisegment transmembrane protein. Applications of the
sum statistic to long DNA sequences will be discussed
elsewhere.

Finally, to illustrate the use and potential power of sum
statistics applied to pairwise sequence comparison, we con-
sider an analysis of the chicken gene X protein (39) and the
fowlpox virus antithrombin III homolog (40). When com-
pared by using the PAM-120 amino acid substitution matrix
(11, 20), three high-scoring segment pairs emerge (Table 3).
Given this scoring system and the amino acid frequencies of
the two sequences, A = 0.314, K = 0.17, and N = 34336,
yielding corrected scores of 7.6, 6.7, and 5.8 for the three
alignments. From formula 1, the associatedP values for these
alignments are all less than 0.004, which is generally consid-
ered significant. However, such similarities are frequently
uncovered in protein data base searches, in which tens of
thousands of pairwise comparisons are typically performed
(2). In such a multitrial context, P values near 10-6 generally
are necessary before statistical significance may be claimed.
None of the individual alignments shown in Table 3 achieve
such significance, and any single one of them could easily
arise by chance in a search of current protein sequence data
bases (38, 41). This is no longer the case, however, when the
three segment pairs are considered together. The sum oftheir
normalized scores is 20.1, which for r = 3 corresponds to a
P value of 5.9 x 10-8, easily significant even in the context
of a large data base search. Notice as well that the three
segment pairs shown in Table 3 are consistently ordered. (In
fact, the three pairs are in almost perfect alignment.) When

this is taken as an a priori requirement for invoking a sum, the
P value drops even further, to 1.2 x 10-8. Thus, the ability
to calculate statistics for the combined scores of distinct
segment pairs can greatly increase the sensitivity ofsequence
comparison tools.

S.F.A. thanks Dr. John Spouge for helpful conversations and Dr.
Warren Gish for programming assistance. We appreciate valuable
comments on the manuscript from Dr. Volker Brendel. S.K. was
supported in part by National Institutes of Health Grants
GM39907-02 and GM10452-26 and National Science Foundation
Grant DMS86-06244.

1.
2.

3.

4.

5.

6.

7.
8.

9.

10.
11.

12.

13.

14.
15.

16.
17.
18.

19.

20.

21.

22.

23.

24.

Karlin, S. & Brendel, V. (1992) Science 257, 39-49.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman,
D. J. (1990) J. Mol. Biol. 215, 403-410.
Pearson, W. R. & Lipman, D. J. (1988) Proc. Natl. Acad. Sci.
USA 85, 2444-2448.
Smith, T. F. & Waterman, M. S. (1981) J. Mol. Biol. 147,
195-197.
Colfins, J. F., Coulson, A. F. W. & Lyall, A. (1988) Comput.
Appl. Biosci. 4, 67-71.
Karlin, S., Bucher, P., Brendel, V. & Altschul, S. F. (1991)
Annu. Rev. Biophys. Biophys. Chem. 20, 175-203.
Mott, R. (1992) Bull. Math. Biol. 54, 59-75.
Smith, T. F., Waterman, M. S. & Burks, C. (1985) Nucleic
Acids Res. 13, 645-656.
Altschul, S. F. & Erickson, B. W. (1985) Mol. Biol. Evol. 2,
526-538.
Fitch, W. M. (1983) J. Mol. Biol. 163, 171-176.
Altschul, S. F. (1991) J. Mol. Biol. 219, 555-565.
Arratia, R., Gordon, L. & Waterman, M. S. (1986) Ann. Stat.
14, 971-993.
Arratia, R. & Waterman, M. S. (1989) Ann. Probab. 17, 1152-
1169.
Karlin, S. & Ost, F. (1988) Ann. Probab. 16, 535-563.
Karlin, S. & Altschul, S. F. (1990) Proc. Natl. Acad. Sci. USA
87, 2264-2268.
Dembo, A. & Karlin, S. (1991) Ann. Probab. 19, 1737-1755.
Karlin, S. & Dembo, A. (1992) Adv. Appl. Probab. 24, 113-140.
Karlin, S., Dembo, A. & Kawabata, T. (1990) Ann. Stat. 18,
571-581.
Brendel, V., Bucher, P., Nourbakhsh, I. R., Blaisdell, B. E. &
Karlin, S. (1992) Proc. Natl. Acad. Sci. USA 89, 2002-2006.
Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C. (1978) in
Atlas of Protein Sequence and Structure, ed. Dayhoff, M. 0.
(Natl. Biomed. Res. Found., Washington, DC), Vol. 5, Suppl.
3, pp. 345-352.
Feng, D. F., Johnson, M. S. & Doolittle, R. F. (1985) J. Mol.
Evol. 21, 112-125.
Gonnet, G. H., Cohen, M. A. & Benner, S. A. (1992) Science
256, 1443-1445.
Henikoff, S. & Henikoff, J. G. (1992) Proc. Natl. Acad. Sci.
USA 89, 10915-10919.
Jones, D. T., Taylor, W. R. & Thornton, J. M. (1992) Comput.
Appl. Biosci. 8, 275-282.

Proc. Natl. Acad. Sci. USA 90 (1993)



Evolution: Karlin and Altschul

25. McLachlan, A. D. (1971) J. Mol. Biol. 61, 409-424.
26. Schwartz, R. M. & Dayhoff, M. 0. (1978) in Atlas ofProtein

Sequence and Structure, ed. Dayhoff, M. 0. (Natl. Biomed.
Res. Found., Washington, DC), Vol. 5, Suppl. 3, pp. 353-358.

27. States, D. J., Gish, W. & Altschul, S. F. (1991) Methods 3,
66-70.

28. Wilbur, W. J. (1985) Mol. Biol. Evol. 2, 434-447.
29. Altschul, S. F. & Lipman, D. J. (1990) Proc. Natl. Acad. Sci.

USA 87, 5509-5513.
30. Gish, W. & States, D. J. (1993) Nature Genet. 3, 266-272.
31. Sellers, P. H. (1984) Bull. Math. Biol. 46, 501-514.
32. Gessel, I. M. (1990) J. Combinat. Theory A 53, 257-285.
33. Knuth, D. E. (1973) The Art ofComputer Programming (Ad-

dison-Wesley, Reading, MA), Vol. 3, pp. 48-72.
34. Michael, W. M., Bowtell, D. D. & Rubin, G. M. (1990) Proc.

Natl. Acad. Sci. USA 87, 5351-5353.

Proc. Natl. Acad. Sci. USA 90 (1993) 5877

35. Simon, M. A., Bowtell, D. D. & Rubin, G. M. (1989) Proc.
Natl. Acad. Sci. USA 86, 8333-8337.

36. Kobilka, B. K., Frielle, T., Collins, S., Yang-Feng, T., Ko-
bilka, T. S., Francke, U., Lefkowitz, R. J. & Caron, M. G.
(1987) Nature (London) 329, 75-79.

37. Karlin, S., Brendel, V. & Bucher, P. (1992) Mol. Biol. Evol. 9,
152-167.

38. Bairoch, A. & Boeckmann, B. (1992) Nucleic Acids Res. 20,
2019-2022.

39. Heilig, R., Perrin, F., Gannon, F., Mandel, J. L. & Chambon,
P. (1980) Cell 20, 625-637.

40. Tomley, F., Binns, M., Campbell, J. & Boursnell, M. (1988) J.
Gen. Virol. 69, 1025-1040.

41. Barker, W. C., George, D. G., Mewes, H. W. & Tsugita, A.
(1992) Nucleic Acids Res. 20, 2023-2026.


