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The Principle of Maximum- Likelihood

The general prinicple of Maximum-Likelihood

Suppose that we have c data sets D1...Dc with the sample Dj

haveing been drawn independently according to the
probability distribution p(x | wj)

We say that such sample are i.i.d.-idependent and identically
distributed random variables

we assume that p(x | wj) has a known parameter form, and
therefore determined uniquely by the value of its paramenter
vector θj

For example, we might have p(x | wj) = N(µj , σj) where θj is
the vector of all components of µj , σj .
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The Problem we want to solve

Notation

To show the dependence of of p(x | wj) on θj explicitly, we
write p(x | θj)
The Problem we want to solve

Use the information provided by the training samples to obtain
good estimates for the unknown parameter vectors θ1, ..., θc

To simplify, assume that Di give no information about
θj , j 6= i . Parameters are different classes are functionally
different. And so we now have c problems of the same form.
So we will work with a generic one such data set D.

We use a set D of training samples drawn independently from
the probability distribution p(x | θ) to estimate the unknown
parameters vector θ.
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The Maximum Likelihood Estimate

Suppose D contains n samples x1, ..., xn. Because the samples
were drawn independently we have

p(D | θ) =
n∏

k=1

p(xk | θ)

p(D | θ) viewed as a function of θ is the likelihood of θ with
respect to D
The maximum-likelihood estimate of θ is, by definition, the
value θ̂ that maximizes p(D | θ)

Intuitively, this estimate corresponds to the value of θ that in
some sense best agrees with or supports the actually observed
training sample.
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Log-Likelihood maximization

For analytical reasons, it is easy to work with the logarithm of
the likelihood than with the likelihood itself, so we use the
log-likelihood objective function

Because the logarithm is monotonically increasing, the θ̂ that
maximizes the log-likelihood also maximizes the likelihood

If p(D | θ) is a differentiable function of θ, θ̂ can be found by
standard differntial calculus methods
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If θ = (θ1, ..., θr )T , let ∇θ be the gradient operator

∇θ = (
∂

∂θ1
, ...,

∂

∂θr
)T
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Define L(θ) as the log-likelihood function

L(θ) = ln p(D | θ)

and

θ̂ = arg max L(θ)

as the argument that Maximizes the log-likelihood; the
dependence on D is implicit.
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We have by the independence condition

L(θ) =
n∑

k=1

ln p(xk | θ)

and

∇θL =
n∑

k=1

∇θ ln p(xk | θ)

This the necessary conditions for the maximum-likelihood
estimate for θ can be obtained from the set of r equations

∇θL = 0
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The Expectation-Maximization (EM) Algorithm

We extend now our application of maximum likelihood to
permit learning of parameters governing a distributionfrom
training points, some of which have mising data features.

If there is no missing data, we can use maximum likelihood,
i.e., find θ̂ that maximizes the log-likelihood L(θ).
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The basic idea of the EM algorithm is to iteratively estimate
the likelihood given the data that is present.

Consider a full sample D = {x1, ..., xn} of points taken from a
single distribution. Suppose that some features are missing:
so we can define for each sample point xk = {xkg , xkb}

i.e., contianing “good” features and the missing data as
“bad” features.
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Let us separate the features in two classes Dg and Db, where
D = Dg ∪ Db

Next we define the Baum function

Q(θ; θi ) = EDb
(ln p(Dg ,Db; θ) | Dg ; θi )

known as the Central Equation

where Q is a function of θ with the θi assumed fixed, and

EDb
is the expectation operator computing the expected value

marginalized over the missing features assuming θi are the
“true” parameters describing the full distribution
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The best intuition behind the Central Equation in the EM
algorithm is as follows:

The parameter vector θi is the current best estimate for the
full distribution

θ is a candidate vector for an improved estimate
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Given such a candidate θ, the right-had side of the central
equation calculates the likelihood of the data including the
unknown features Db marginalized with respect to the current
best distribution which is described by θi

Different such candidates will lead to different such likelihoods

Our algorithm will select the best such candidates θ and call it
θi+1, the one corresponding to the greatest value of Q(θ; θi )

Sorin Istrail
HMM: The Learning Problem. Part II: Maximum Likelihood and the EM Algorithm Foundations



The Principle of Maximum-Likelihood
The Expectation-Maximization (EM) Algorithm

Expectation-Maximization (EM) Algorithm

BEGIN Initiatlize theta powerto 0, epsilon, i=0

------

DO i=i+1

E step: Compute Q(theta; theta topower i)

M step: theta topower {i+1} = arg max

Q(theta, theta topower i)

UNTIL Q(theta topower {i+1}; theta topower i) -

Q((theta powerto i; theta topower {i-1}) <= epsilon

RETURN theta-hat = theta topower {i+1}

END

----
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The EM algorithm is most useful when the optimization of the
Q function is simpler than the likelihood L.

Most importantly, the algorithm guarantees that the
log-likelihood of the good data (with the bad data
marginalized) will increase monotonically.

This is not the same as finding the particular values of the
bad data that givess the maximum-likelihood of the full,
complete data.
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