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The coalescent with recombination describes the distribution of genealogical histories and resulting
patterns of genetic variation in samples of DNA sequences from natural populations. However, using
the model as the basis for inference is currently severely restricted by the computational challenge of
estimating the likelihood. We discuss why the coalescent with recombination is so challenging to work
with and explore whether simpler models, under which inference is more tractable, may prove useful
for genealogy-based inference. We introduce a simplification of the coalescent process in which
coalescence between lineages with no overlapping ancestral material is banned. The resulting process
has a simple Markovian structure when generating genealogies sequentially along a sequence, yet has
very similar properties to the full model, both in terms of describing patterns of genetic variation and
as the basis for statistical inference.
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1. INTRODUCTION
The coalescent with recombination describes the
distribution of genealogies underlying samples of
chromosomes from unrelated individuals in idealized
natural populations (Hudson 1983; Griffiths &

Marjoram 1996). Starting from the present and looking
back in time, the ancestral lineages relating to the
sampled chromosomes are traced until coalescence

(where two ancestral lineages meet in a common
ancestor) or recombination (where an ancestral lineage
splits in two). The resulting ancestral recombination
graph (ARG) has embedded within it the marginal

genealogy (or phylogenetic tree describing the ancestry
of the chromosomes) at any position along the
sequence and, by mapping mutations on to the graph,

describes patterns of genetic variation in the sampled
chromosomes. Under models with constant population
size and randommating, two parameters determine the
distribution of variation: the population mutation rate

qZ4Nem (where Ne is the effective population size and
m is the per generation mutation rate); and the
population recombination rate rZ4Ner (where r is
the per generation recombination rate).

Stochastic simulation under the model (backwards
in time starting from the present) is computationally
straightforward because at any point in time the rates of

coalescence and recombination are simple functions of
the ancestral lineages present (i.e. it has a Markovian
structure; Hudson 1983). In contrast, the alternative
approach of simulating genealogies while moving along

a sequence (Wiuf & Hein 1999) has a complex non-
Markovian structure in that the distribution of the next
genealogy depends not just on the current genealogy,
but also all previous ones. Both approaches, however,

can make use of the separation of the genealogical and
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mutational processes under neutrality (Hudson 1990).

Consequently, the ARG may be generated first with

mutations subsequently added to the marginal genea-

logies as a Poisson process.

Efficient inference under the coalescent with recom-

bination is notoriously difficult (Stumpf & McVean

2003). For example, moment estimation of r can be

achieved by comparing the sample variance in pairwise

differences to the expectation under neutrality (using a

point estimate of q; Hudson 1987; Wakeley 1997), but

the estimator uses only a fraction of the available

information about recombination and is both biased

and has high variance (Wall 2000).

In contrast, likelihood-based inference (which uses

all possible information) is currently restricted because

there exists no analytic or numerical expression for the

likelihood function and the construction of efficient

Monte Carlo methods for estimating the likelihood is

technically challenging. Naively, the likelihood could

be estimated by simulating ARGs from the coalescent

distribution given r, adding mutations to the ARGs

from the distribution given by q and looking to see if the

simulated data matched the data observed. By repeat-

ing many times under different values of q and r,

maximum likelihood estimates of the statistic could be

obtained. In practice, the naive approach is infeasible

because the vast majority of ARGs contribute nothing

to the likelihood. Consequently, sophisticated Monte

Carlo methods such as importance sampling (IS;

Fearnhead & Donnelly 2001) and Markov Chain

Monte Carlo (MCMC; Kuhner et al. 2000; Nielsen

2000) must be used (reviewed in Stumpf & McVean

2003), which create bias towards the simulation of

ARGs that make significant contributions to the

likelihood.

To date, while Monte Carlo methods can be used to

calculate likelihoods for very simple datasets, they are

still impractical for most datasets currently being

collected. Instead, three alternative approaches to

coalescent-based inference have been explored.
q 2005 The Royal Society
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First, it is possible to calculate the likelihood of a
summary of the data, rather than the data itself. For
example, Wall (2000) suggested estimating r by
calculating the likelihood of observing the number of
haplotypes (H) and the minimum number of recombi-
nation events (Rm) as estimated by the method of
Hudson & Kaplan (1985). Importantly, this likelihood
may be calculated by naive simulation, potentially
aided by regression techniques (Beaumont et al. 2002).
The second approach is to divide the complete data
into smaller subsets (pairs of segregating sites; Hudson
2001; McVean et al. 2002 or non-overlapping windows
Fearnhead & Donnelly 2002), the likelihood of which
can be calculated using IS or even naive methods.
Combining likelihood calculations across subsets can
give accurate estimates (Wall 2000), and can be used to
estimate variation in the recombination rate (McVean
et al. 2004), but the resulting likelihoods do not have
standard properties (e.g. be used to calculate support
intervals).

The third approach is to simplify or approximate the
coalescent model itself. Building on research into
optimal IS proposal distributions, Stephens & Li
(2003) proposed a new statistical model for genetic
data with recombination that generates patterns of
genetic variation similar to the coalescent, but uses an
approximation to the genealogical process. Impor-
tantly, the approximation means that likelihoods are
easy to compute (referred to as product of approximate
conditional, or PAC likelihoods), hence the approach
generates a true likelihood.

The disadvantage of approximating the coalescent
model is that the biological validity of the approxi-
mation may be poor. In the PAC approach, chromo-
somes are no longer exchangeable (i.e. the likelihood
depends on the order in which chromosomes are
analysed), and the estimated recombination parameter
can only be related to that of the coalescent through an
empirical bias correction. Even more importantly, the
coalescent approximation does not correspond to any
well defined genealogical process, so that no inferences
can be made about the ancestral history of the sample
(e.g. the marginal genealogy at a given position).

The potential advantages of developing tractable
alternative models to the coalescent, combined with the
disadvantages of the PAC model, stimulate the search
for other possible approximations to the coalescent
process. However, such a search should be motivated
both by an appreciation of what makes the coalescent
with recombination so difficult a model under which to
perform inference, and how to assess the merit of
alternative models for sequence variation data. Here,
we focus on one aspect of the coalescent with
recombination that makes inference difficult: the
sequentially non-Markovian behaviour of the coalesc-
ent model. Our approach is to introduce a simplifica-
tion of the standard coalescent process (called the
sequentially Markov coalescent or SMC) that loses this
aspect of model complexity, and to compare its
properties with the full model. We show that the
model differs only marginally from the standard model
in terms of the predicted patterns of genetic variation
and suggest that it may provide both a tractable and
useful model for genealogy-based inference.
Phil. Trans. R. Soc. B (2005)
2. WHAT IS DIFFICULT ABOUT THE COALESCENT
WITH RECOMBINATION?
Before considering novel approximations to the

coalescent with recombination it is necessary to

appreciate why the basic model is so difficult to

estimate likelihoods under. There are three important

and inter-related issues.
(i)
 The state-space of ARGs is huge.

(ii)
 The data are generally not very informative about

the actual ARG.

(iii)
 Likelihood estimation is a missing-data problem

with highly redundant augmentation.
The state-space of ARGs is huge because the

number of recombination events is unbounded and

when the rate of recombination is high, most

coalescent events will be between lineages that have

no overlapping ancestral material and which will

rapidly get broken up by further recombination.

However, the size of the state space in itself does not

make the problem of likelihood calculation difficult.

More importantly, unless the ratio of mutation to

recombination is very high, there is generally little

information about the true genealogy underlying the

sample at any point. This means that the likelihood

function will not be dominated by any single ARG, so

that efficient sampling of diverse contributing ARGs is

required.

The last issue needs more explanation. Inference

under the coalescent with recombination is an example

of a missing data problem: if the true ARGwere known,

calculating the data likelihood would be trivial, hence

summing over possible ARGs is achieved by succes-

sively augmenting the data with potential ones.

However, the data likelihood is actually only dependent

on the set of marginal genealogies embedded within the

ARG, and every set of marginal genealogies corre-

sponds to an infinite set of ARGs. In effect, the

coalescent with recombination provides an indirect

model for the set of marginal genealogies underlying a

sample of chromosomes. The problem is that there is

no direct way of calculating the coalescent likelihood

from a set of marginal genealogies (i.e. integrating over

the possible ARGs that could have given the set of

marginal genealogies). As a result, inference methods

are based on augmenting with the more complex and

potentially redundant ARGs (redundant in the sense

that two ARGs with identical marginal genealogies may

have very different likelihoods).

The coalescent is, of course, just one possible model

for the set of marginal genealogies (albeit based on an

appreciation of reproduction in natural populations).

In the following section we develop the idea that

alternative models might be worth considering if they

both prove easier for inference and have properties

similar to the coalescent. In particular, we introduce a

simplification of the coalescent that generates sets of

marginal genealogies with a similar correlation

structure to the coalescent but has both a much-

reduced state-space and a direct way of calculating

the coalescent likelihood for a set of marginal

genealogies.



Figure 2. The sequentially Markov coalescent with recombi-
nation. The point of the recombination event (indicated by a
crossmark) is placed uniformly on the tree. The branch above
it is removed and the lineage coalesces back to the remaining
tree at a rate proportional to the number of lineages present.

Figure 1. The ratio of the average number of recombination
events in the ARG for the standard coalescent to the average
number of recombination events in the SMCmodel for nZ2.
The average number of recombination events in the SMC is
equal to r.

Approximating the coalescent G. A. T.McVean & N. J. Cardin 1389
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3. THE SEQUENTIALLY MARKOV COALESCENT
We first describe a generalization of the standard
coalescent process for a constant population size. At
any point in time the state of the coalescent process is
described by the set of k ancestral lineages, the ith of
which contains ancestral material at a set of mi ordered
non-overlapping intervals on the unit interval (treating
sequences as continuous)

xi Z fðxi1; yi1Þ; ðxi2; yi2Þ;.; ðximi
; yimi

Þg; (3.1)

where xij and yij represent the lower and upper limits
respectively of an interval of ancestral material. The
instantaneous rate of coalescence is the sum of the rates
for all pairs of lineages that can potentially coalesce
(note each pair coalesces independently)

lC Z
X
isj

Ii;j ; (3.2)

where IijZ1 under the standard coalescent for all i and j
(isj ). The instantaneous rate of recombination is

lR Z r=2
X
i

ðyimi
Kxi1Þ: (3.3)

The time until the next event is distributed as a random
exponential variable with rate lCClR, with the type of
event being drawn in proportion to its contribution to
the summed rates. If a coalescent event is chosen, the
resulting lineage acquires the union of the intervals of
ancestral material. After coalescence, if any interval is
represented by just one ancestral lineage the most
recent common ancestor (MRCA) of that interval has
been reached and the interval is removed. Recombina-
tion events result in a splitting of ancestral material,
where the point of splitting is chosen uniformly from
the interval ðxi1; yimi

Þ for a constant recombination rate.
The process for a sample of size n is initialized by
setting kZn and miZ1, xi1Z0, yi1Z1 for all i and
terminated when every point along the sequence has
found an MRCA.

The SMC process requires a simple modification to
the process. If Xi(Zgxi) is the set of all loci at which
chromosome i has ancestral material

Ii;j Z
1 if X ihX js: and isj

0 otherwise
:

(

In other words, if two ancestral lineages have no
interval in common where they share ancestral material
they are not allowed to coalesce.

By restricting coalescent events in this way the
resulting process has three important differences from
the standard coalescent. First, the state-space of ARGs
is much reduced (though the state-space of the set of
marginal genealogies is unaltered). Second, the SMC
model will tend to have many fewer recombination
events in its history (figure 1). Third, the resulting
process has a Markovian structure in the sequential
generation of genealogies along a chromosome.

The Markovian structure along a chromosome is
best described in terms of the sequential algorithm for
simulating a set of marginal genealogies on the unit
interval for n sequences under the SMC model
Phil. Trans. R. Soc. B (2005)
(figure 2). The algorithm can be described through a

series of steps.
(i)
 Simulate a standard coalescent history at point 0
(i.e. without recombination). The resulting tree
has a total branch length of T0.
(ii)
 The distance along the unit interval until the first
recombination event is exponentially distributed
with rate rT0/2. If the point at which the
recombination event occurs is less than one, the
position at which the recombination occurs on the
marginal genealogy is drawn uniformly and the
older portion of the branch on which the event
occurred is erased, resulting in a ‘floating’ lineage.
(iii)
 The floating lineage coalesces with the remaining
genealogy at rate proportional to the number of
ancestral lineages present (note that the time at
which it rejoins may be older than the current time
of the MRCA or TMRCA). Note also that this is
the point of departure from the standard coalesc-
ent, where the floating lineage may coalesce with
all ancestral lineages, not just those remaining on
the previous genealogy.
(iv)
 The previous genealogy is discarded and the
process repeated with the new genealogy until
the next recombination event occurs beyond the
unit interval.



Table 1. P(r), Q(0.5, r) and Q*(r) as a function of
recombination rate.

r P(r) Q(0.5, r) Q*(r)

0.1 0.937 0.0002 0.0003
1 0.594 0.012 0.023
2 0.417 0.029 0.054
5 0.213 0.066 0.106
10 0.113 0.087 0.123
20 0.056 0.087 0.112
50 0.021 0.060 0.065
100 0.010 0.037 0.045
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The backwards-in-time and sequential formulations
lead to the same distribution on marginal genealogies
because restricting coalescence to lineages that have
overlapping ancestral material is equivalent to only
allowing the floating lineage to coalesce to the remain-
ing part of the previous genealogy. There is a slight
difference between the processes in that recombination
events in non-ancestral material can occur in the
backwards-in-time process (when a site has reached
its MRCA but the neighbouring sites have not), which
are equivalent to recombination events on the stalk
of the marginal genealogy. However, such events
have no influence on the distribution of marginal
genealogies.
4. PROPERTIES OF THE SEQUENTIALLY
MARKOV MODEL
The point of introducing the modified coalescent
process is that while it has a similar structure to the
standard process (and is therefore a reasonable model
for patterns of genetic variation), the reduced state-
space and sequentially Markovian structure may make
inference considerably easier compared with the full
coalescent. For example, estimation of likelihoods
using the backwards-in-time IS scheme of Fearnhead &
Donnelly (2001) may be more efficient because fewer
events need to be considered at each step and fewer
recombination events will occur in the history of the
sequences. In addition, the Markovian sequential
nature allows for efficient calculation of the coalescent
likelihood for a set of marginal genealogies, which
enables the use of MCMC methods in which marginal
genealogies are updated locally.

However, the adequacy of the model as compared
with the full coalescent process will depend on how
much the restrictions to the ancestral process influence
patterns of variation. To address this question, we have
considered three properties of the original and modi-
fied coalescent processes. First, we assess the import-
ance of the non-Markovian structure of marginal
genealogies under the standard coalescent. Second,
we compare expected patterns of linkage disequili-
brium under the two models. Finally, we consider
inference under both models, using a simple example
with two sequences.
(a) Non-Markovian properties of the standard

coalescent process

To quantify the importance of coalescent events
between ancestral lineages that share no overlapping
material (the events that generate a non-Markovian
sequential algorithm) we consider two related pro-
babilities. Q(x, r) is the probability (for a given value
of r) that two unrelated sequences that share a single
MRCA at points 0 and 1 have a different MRCA at an
intervening point x. Q*(r) is the probability that two
sequences that share a single MRCA at points 0 and 1
do not share one in at least one intervening interval.
The probability, P(r), that a pair of sequences share a
common ancestor at points 0 and 1 is (proof not shown)

PðrÞZ
18Cr

18C13rCr2
: (4.1)
Phil. Trans. R. Soc. B (2005)
Whereas Q(x, r) can be obtained numerically
(equations not shown), Q*(r) can only be obtained by
Monte Carlo simulation (we used 106 samples). Under
the sequentially Markov process, Q(x, r)ZQ*(r)Z0,
so themagnitude of these quantities determine the error
in the sequentially Markov process.

Table 1 shows how these probabilities vary as a
function of the recombination rate. While the prob-
ability that points 0 and 1 share an MRCA decreases
monotonically, the conditional probabilities of having a
different intervening MRCA peak at intermediate
values of r. The non-Markovian behaviour is strongest
for rz10, where there is approximately a 12% chance
of having a different intervening MRCA, conditional
on the two end points sharing an MRCA. Note,
however, that there is only an 11% chance of the two
points sharing an MRCA at all, so the absolute
probability of the non-Markovian event is less than 2%.
(b) Linkage disequilibrium

We can also compare models in terms of the patterns of
linkage disequilibrium (LD) generated. Specifically, we
can compare the distribution of two-locus summaries
of allelic association under the coalescent and sequen-
tially Markov processes.

For two bi-allelic loci, the r2 measure of association
(Hill & Robertson 1968) is the square of the correlation
coefficient between allelic states. Although no simple
expression for moments of the distribution of r2 can be
derived, a related quantity is given by

s2d Z
E½D�2

E½p1q1p2q2�
; (4.2)

where D is the standard disequilibrium coefficient and
pi and qi are the allele frequencies at locus i (Ohta &
Kimura 1971). By conditioning on segregation at both
loci and letting the mutation rate tend to zero, McVean
(2002) showed how equation (4.2) could be expressed
in terms of the covariance in coalescence times at the
two loci for different configurations of chromosomes

s2d Z
Cij;ij K2Cij;ik CCij;kl

E½t�2 CCij;kl

; (4.3)

where Cij,kl is the covariance between the coalescence
time for two sequences i and j sampled at the first locus,
and two (possibly identical) sequences k and l sampled
at the second locus. Expressions for the covariance
terms under the coalescent can be derived by solving a
system of linear equations. For the coalescent these



65Krð91C9rÞÞÞÞÞÞ
2ð6CrÞ2

:

Figure 3. The decay of LD as a function of genetic distance
(r) as approximated by sd

2 under the standard coalescent
process (black) and the sequentially Markov version (grey).

Table 2. Mean and standard deviation of r2.

4Ner coalescent sequentially Markov

0.1 0.200 (0.342) 0.199 (0.340)
1 0.146 (0.273) 0.141 (0.265)
10 0.059 (0.128) 0.058 (0.128)
100 0.027 (0.066) 0.026 (0.065)
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give (Pluzhnikov & Donnelly 1996)

Cij;ij Z
18Cr

18C13rCr2
;

Cij;ik Z
6

18C13rCr2
;

Cij;kl Z
4

18C13rCr2

For the SMC we have to assume that all recombination
is concentrated at a single point between the two sites.
In this case the covariance terms are

C�
ij;ij Z

1

1Cr
;

C�
ij;ik Z

30C4rð7CrÞ

3ð1CrÞð2CrÞð3CrÞð5CrÞ
;

C�
ij;kl Z

2ð21 600Crð37 080Crð21 690Crð5017Crð1

9ð1CrÞð2CrÞð3CrÞð4CrÞð5CrÞ

The resulting values of sd
2 under the two models are

shown in figure 3. Preventing coalescent events
between ancestral lineages that share no ancestral
material only very slightly reduces linkage disequili-
brium relative to the standard coalescent process. We
have also investigated the difference in the distribution
of r2 under the two models by Monte Carlo simulation
(table 2; we used 106 samples with nZ50, qZ0.05 per
site and conditioning on segregation). The marginal
reduction in r2 for a given value of r is also observable,
though note that the expectation of r2 is considerably
lower than the corresponding value of sd

2 due to the
covariance of allele frequency and LD statistics, an
effect that can be countered by conditioning on
mutations above a certain frequency (McVean 2002).
Importantly, banning coalescent events between
lineages that share no overlapping ancestral material
does not seem tomarkedly reduce the variance of LD at
any genetic distance.
(c) Inference
We have demonstrated that banning coalescent events
between lineages that share no overlapping ancestral
material has little notable effect on the distribution of
Phil. Trans. R. Soc. B (2005)
two-locus statistics of LD. However, we have also

shown that non-Markovian behaviour can have some

effect on the distribution of genealogies, so it is not

obvious that inferences made under the sequentially

Markov process will be similar to those made under the

full coalescent.

While a full exploration of inference under the

sequentially Markov model is beyond the scope of this

article, we can consider a simple example for two

sequences. For simplicity we will assume a model in

which recombinationoccurs at afinitenumberof equally

spaced points. In our toy example we use 20 sites with

single mutations in intervals 2, 3, 4, 5, 16, 17 and 18.

For inference we can calculate a likelihood surface

for q (per interval) and r (for the region) by naiveMonte

Carlo simulation. Figure 4 shows the joint log likelihood

surface under the twomodels.Themaximum likelihood

estimates for q and r are very similar under both models

(q̂Z0:325 for both; r̂Z35 for the coalescent and r̂Z30

for the sequentially Markov process).

For the estimated parameter values, we can also

calculate the posterior distributions of the number of

recombination events between each pair of sites and the

marginal TMRCAs (figure 5), using the MCMC

method of Griffiths (1999). The distribution of the
expected TMRCA along with sequences is almost
identical under the standard coalescent and sequen-
tially Markov processes. The distributions of the
number of recombination events are also similar in
shape, peaking in the regions with mutations. However,
the expected number of recombination events under
the coalescent is approximately twice as high as under
the sequentially Markov process, because coalescence
between lineages that share no overlapping ancestral
material provide further opportunity for recombina-
tion. Note, however, that this does not lead to a large
shift in the estimated recombination rate.
5. DISCUSSION
The analysis of patterns of linkage disequilibrium using
Wright–Fisher models has long history in populations
genetics (Hill & Robertson 1968; Ohta & Kimura
1971; Hill 1975; Weir & Hill 1986). Of particular
interest has been the extent to which variation in the
extent of linkage disequilibrium along a chromosome
reflects underlying variation in the recombination rate
(Weir & Hill 1986; Crawford et al. 2004; Fearnhead
et al. 2004; McVean et al. 2004). However, recent
attempts to use the coalescent with recombination as



Figure 4. Log likelihood surface for q and r under the standard coalescent and sequentially Markov processes. Although the
maximum likelihood estimates of both parameters are very similar under the two models, it should also be noted that the
likelihood surfaces are very flat.

Figure 5. Expected values of the number of recombination events and TMRCA at each position under the standard coalescent
(black) and sequentially Markov processes (grey). Maximum likelihood estimates of q and r were used for each. Open circles
represent the position of the mutations in the sequences.

1392 G. A. T.McVean & N. J. Cardin Approximating the coalescent
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a model for genetic variation have used approximations
either to the likelihood function or the model itself,
because estimating the likelihood function is compu-
tationally intractable for all but the smallest datasets.

The problem with the current methodologies is that
while they may be useful for estimating the recombina-
tion rate, they do not explicitly model the ancestral
history of set of sequences and hence cannot be used to
estimate genealogies along a chromosome, or the ages
of mutations and MRCAs. Knowing such quantities is
of interest to many areas of population genetics (such as
demographic inference and association mapping),
which has generated our interest in developing genea-
logical models related to the coalescent under which
inference may be easier.

There are many potential approaches to approxi-
mating the coalescent process so as to result in models
that are easier for inference, but retain a notion of
genealogy. The sequentially Markov process described
might provide one such model, although further
research is required into whether inference under the
model is sufficiently more efficient than under the
standard coalescent. More generally, we have shown
Phil. Trans. R. Soc. B (2005)
that the exclusion of certain types of event in the
coalescent with recombination (coalescence between
lineages that share no overlapping ancestral material)
results in a model for genealogical structure, genea-
logical correlation, and patterns of genetic variation
that do not differ markedly from the standard model. It
is therefore unlikely that inferences about genealogical
history made under the sequentially Markov model will
differ significantly than those made under the more
complex model.

For most species, accurate reconstruction of evol-
utionary histories that include recombination (ARGs)
is not possible (indeed it is theoretically impossible for
recombination events that can never be detected; Wiuf
et al. 2001; Myers & Griffiths 2003). Furthermore,
when rates of recombination and mutation are com-
parable (as in humans), reliable reconstruction of the
true genealogy at any given nucleotide position is an
impractical aim. Conversely, estimating likelihoods by
Monte Carlo methods that sum over possible ARGs
given the data will always be difficult when the data are
so uninformative. For these reasons, approximations to
the coalescent with recombination are likely to be
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the only realistic route to genealogical inference from
sequence variation in large datasets.

Many thanks to Chris Spencer, Brian Charlesworth and two
anonymous referees for discussion and comments on the
manuscript
REFERENCES
Beaumont, M. A., Zhang, W. & Balding, D. J. 2002

Approximate Bayesian computation in population gen-
etics. Genetics 162, 2025–2035.

Crawford, D. C., Bhangale, T., Li, N., Hellenthal, G., Rieder,
M. J., Nickerson, D. A. & Stephens, M. 2004 Evidence for
substantial fine-scale variation in recombination rates
across the human genome. Nat. Genet. 36, 700–706.

Fearnhead, P. & Donnelly, P. J. 2001 Estimating recombina-
tion rates from population genetic data. Genetics 159,
1299–1318.

Fearnhead, P. & Donnelly, P. 2002 Approximate likelihood
methods for estimating local recombination rates. J. R.
Stat. Soc. B 64, 1–24.

Fearnhead, P., Harding, R. M., Schneider, J. A., Myers, S. &
Donnelly, P. 2004 Application of coalescent methods to
reveal fine-scale rate variation and recombination hot-
spots. Genetics 167, 2067–2081.

Griffiths, R. C. 1999The time to the ancestor along sequences
with recombination. Theor. Popul. Biol. 55, 137–144.

Griffiths, R. C. & Marjoram, P. 1996 An ancestral recombi-
nation graph. In IMA volume on mathematical population
genetics (ed. P. J. Donnelly & S. Tavaré), pp. 257–270.
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