
Velvet Algorithm
CS1820

Previous Sequencing
Methods

• Sanger sequencing, pyrosequencing

• Whole genome shotgun fragment
assembly
•Piecing together fragments randomly

extracted from sample to form continguous
sequences (contigs)
•Overlap-Layout-Consensus

• Euler Assembly
• de Bruijn Graphs

Problem

• Not suited for very short reads
(~25-50bp)
•More repeats and errors

• Cost effective to use very short
reads

Velvet Algorithm

• de Bruijn Graph Assembly

• Very Short (~25-50bp), Paired Reads

• Eliminate errors and resolve repeats

Structure

• De Bruin Graph
•Each node N represents series of
overlapping k-mers
•Adjacent k-mers overlap by k-1
•Each node attached to “twin node”
•the reverse complement
•Form “block”

Construction

• K-mer length
•Big debate: sensitivity vs specificity
•Usually 21bp k-mer for 25bp length

reads

• 2 Hash Tables
• 1st: Originial k-mers, positions in reads,

and complements
•2nd: k-mers that are not overlapped by

other reads

Simplification

•Combine nodes that have
only one outgoing and one
ingoing node

Error Removal

• Removing Tips

• Removing Bubbles
•Tour Bus Algorithm

Tips

• Either do not have outgoing or do
not have incoming node

• Remove if:
•Shorter than 2k
•The arc leading to the tip has

multiplicity inferior to at least one of
the other arcs connected to the
junction node

Bubbles

• Formed when two paths start and
end at the same nodes

• Can be created by sequencing
errors or biological mutations, such
as SNPs

• Removed with “Tour Bus
Algorithm”

Tour Bus Algorithm

• When a bubble is encountered
•Return to closest common
ancestor
•Extract sequences of bubble and
align
•If sequences are similar enough,
merge the sequences
•Path that reaches end node first,
“shortest path,” is used because it
has higher coverage

Removing Erroneous Connections

• The erroneous connections left after Tour Bus cannot be identified via the graph
topology

− Cannot find a recognizable loop or structure
− Cannot be associated directly to a corresponding correct

path
• Solution:

− Create a coverage cutoff
− Currently set by the user

• Concern: doesn’t this undo Tour Bus’s goal of preserving ‘important’ low
coverage nodes?

− No, Tour Bus turns those into long straight nodes which
have near average coverage

Breadcrumb!

• Assembly is limited by the repeat structure in the sequenced genome

• We need to be able to resolve these repeats!

• We need to be able to connect contiguous regions through repeated regions,
otherwise these repeats would create tangles in the de Bruijn graph.

• How do we do this? With Breadcrumb!

Breadcrumb algorithm.

Daniel R. Zerbino, and Ewan Birney Genome Res.
2008;18:821-829

Copyright © 2008, Cold Spring Harbor Laboratory Press

The Breadcrumb Algorithm

• We start by selecting a cutoff length longer than most of the inserts, and
designate “long nodes” to be the nodes that are longer than the cutoff.

• Using the read pairs, Breadcrumb starts by pairing up the long nodes. Because
we did not set any restriction on uniqueness, some long nodes may consistently
connect to several other long nodes, but they are simply flagged as ambiguous
and left untouched. This selection eliminates some duplicated nodes, but not
necessarily all of them.

• Select only unambiguous long nodes, Breadcrumb flags all the nodes containing
the mate reads of the reads in that long node. If a single opposite long node is
available, then all the nodes that pair up to it are also flagged. Because of the
node length constraint, between two long contigs nearly all paired reads map
onto a read on either of the long reads.

• Breadcrumb then extends the unique node by going as far as possible from one
connected flagged node to the next and stopping if there are no connections or if
the node is flagged. In the best case, a simple path can be found to the opposite
long node, and the two contigs can be merged.

Breadcrum cont’d

• We must allow for erroneous reads!

• All reads detected while removing erroneous connections are marked
unreliable.

• Long nodes may be erroneously connected to very few paired reads, in which
case we discard the weak connections between long nodes.

• However, error also occurs in low complexity regions, so it is necessary to
apply Tour Bus to the flagged nodes only, where we flag them instead of
destroying them.

Time Complexity

• Main bottleneck is graph construction- the initializer graph for streptococcus
needs 2 Gb of RAM alone!

• Tour bus uses a modified version of Dijkstra which has a time complexity of
O(NlogN), where N is the number of nodes in the graph. This N depends on
read coverage, error rate, and number of repeats.

• The runtime on breadcrumb is dependent on some subset K of N, where K is the
size of the set of long nodes (remember that we set a threshold from which to
select our K). It is a near constant amount of time per long node though, so its
around O(K).

Why Velvet?

• There are other short read assemblers

• SSAKE and VCAKE explore a de Bruijn graph by searching for reads in a hash
table.

• Since Velvet builds this graph, it uses more memory but tends to be much faster
and produces longer contigs without misassembly!

• Velvet makes connected supercontigs out of very short reads. The connectivity
of the supercontigs is super useful!

