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Ising model
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Sweep algorithm

Pick a root label r

Label all objects r

Repeat:

- Pick tree edge (a, b) with a explored and b not explored

- Find optimal (a, b) swap move

Label of each node starts at r and moves down the tree 

G T (tree of labels)

E(x) = �

0

@
X

(a,b)2E

1(xa 6= xb)

1

A

Thursday, March 21, 13



Ising model

small b large b

samples from p(x)

sampling is hard - gibbs sampling: markov chain method
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Gibbs samplimg

• Markov chain

• initialize x=0

• repeat

• pick node a uniformly at random

• sample new value for xa from p(xa|x\a)

• x at time t > T comes from a distribution 
close to p(x)

Sweep algorithm

Pick a root label r

Label all objects r

Repeat:

- Pick tree edge (a, b) with a explored and b not explored

- Find optimal (a, b) swap move

Label of each node starts at r and moves down the tree 

G T (tree of labels)
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Image restoration

small b

large b
noisy image (y)

maximizing p(x|y) ~ p(y|x)p(x)
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MAP Inference with Ising
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Graph cuts

10

Figure 1: Cuts separating the terminals (labeled 0 and 1) in this graph correspond to binary

labelings of a 3 by 3 image. The dark nodes are the pixel vertices. This graph assumes the usual

4-connected neighborhood system among pixels.

1. Besides the terminals, there is one vertex per pixel; each such pixel vertex is connected to

the adjacent pixel vertices, and to each terminal vertex. A cut in this graph leaves each pixel

vertex connected to exactly one terminal vertex. This naturally corresponds to a binary labeling.

With the appropriate choice of edge weights, the cost of a cut is the energy of the corresponding

labeling.6 The weight of edges cut between pixel vertices will add to the number of adjacent pixels

with di↵erent labels; the weight of edges cut between pixel vertices and terminals will sum to �

times the number of pixels with opposite labels to those observed in the input data.

It is important to realize that this construction depends on the specific form of the Ising model

energy function. Since the terminals in the graph correspond to the labels, the construction is

restricted to 2 labels. As mentioned above, the natural multi-terminal variants of the min-cut

problem are NP-hard [28]. In addition, we cannot expect to be able to e�ciently solve even simple

generalizations of the Ising energy energy function, since minimizing the Potts energy function with

3 labels is NP-hard [20].

3.4 Bipartite matching algorithms

In the minimum weight bipartite matching problem we have a bipartite graph with V = A[B and

weights w
e

associated with each edge. The goal is to find a perfect matching M with minimum total
6
There are two ways to encode the correspondence between cuts and labelings. If pixel p gets labeled 0, this can

be encoded by cutting the edge between the vertex for p and the terminal vertex for 0, or to leaving this edge intact

(and thus cutting the edge to the terminal vertex for 1). The di↵erent encodings lead to slightly di↵erent weights for

the edges between terminals and pixels.

14

Sweep algorithm

Pick a root label r

Label all objects r

Repeat:

- Pick tree edge (a, b) with a explored and b not explored

- Find optimal (a, b) swap move

Label of each node starts at r and moves down the tree 

G T (tree of labels)

directed graph
s-t cut is a partition of the 
nodes (S,T)  s in S, t in T

cut(S, T ) =
X

a2S,b2T

c(a, b)
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labelings of a 3 by 3 image. The dark nodes are the pixel vertices. This graph assumes the usual

4-connected neighborhood system among pixels.
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generalizations of the Ising energy energy function, since minimizing the Potts energy function with

3 labels is NP-hard [20].

3.4 Bipartite matching algorithms

In the minimum weight bipartite matching problem we have a bipartite graph with V = A[B and

weights w
e

associated with each edge. The goal is to find a perfect matching M with minimum total
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There are two ways to encode the correspondence between cuts and labelings. If pixel p gets labeled 0, this can

be encoded by cutting the edge between the vertex for p and the terminal vertex for 0, or to leaving this edge intact

(and thus cutting the edge to the terminal vertex for 1). The di↵erent encodings lead to slightly di↵erent weights for

the edges between terminals and pixels.
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Min-st cuts

• Compute max-flow

• start with f = 0

• repeatedly find augmenting paths

• Retrieve min-cut

• BFS from s until saturated edges
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Image restoration

y x

x, y 2 {0, 1, 2, . . . , 255}
E(x) = �(#discontinuities)

iid noise
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Generalizations

• Ising:

• x = 0/1

• attractive pairwise terms

• 0=V(1,1)=V(0,0)< V(1,0)=V(0,1)=beta

• graph-cuts generalizes to

• V(1,1)+V(0,0) < V(0,1)+V(1,0)

• x = 0,1,2,...
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