Machine learning 2013 Ising model Image restoration

Ising model

Ising model

samples from $p(x)$

small b

large b
sampling is hard - gibbs sampling: markov chain method

Gibbs samplimg

- Markov chain
- initialize $\mathrm{x}=0$

- repeat
- pick node a uniformly at random
- sample new value for x_{a} from $P\left(x_{a} \mid x_{1 a}\right)$
- x at time $t>T$ comes from a distribution close to $p(x)$

Image restoration

MAP Inference with Ising

$$
\begin{array}{ll}
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)} & \\
p(y \mid x)=\prod_{a} p\left(y_{a} \mid x_{a}\right) & \log (p(y \mid x))=\sum_{a} \log \left(p\left(y_{a} \mid x_{a}\right)\right) \\
p(x)=\frac{1}{Z} e^{-E(x)} & \log (p(x))=-E(x)-\log Z
\end{array}
$$

$$
\log (p(x \mid y))=\sum_{a} \log \left(p\left(y_{a} \mid x_{a}\right)\right)-\sum_{(a, b) \in E} \beta 1\left(x_{a} \neq x_{b}\right)-\log Z-\log (p(y))
$$

$$
E^{\prime}(x)=\sum_{a} D_{a}\left(x_{a}\right)+\sum_{(a, b)} V\left(x_{a}, x_{b}\right)
$$

Graph cuts

directed graph s -t cut is a partition of the $\quad \operatorname{cut}(S, T)=\sum c(a, b)$ nodes (S,T) s in S, t in T

$$
a \in S, b \in T
$$

Min-st cuts

- Compute max-flow
- start with $\mathrm{f}=0$

- repeatedly find augmenting paths
- Retrieve min-cut
- BFS from s until saturated edges

Image restoration

$y \quad x$
$x, y \in\{0,1,2, \ldots, 255\}$
$E(x)=\beta(\#$ discontinuities $)$
iid noise

Generalizations

- Ising:
- $x=0 / I$
- attractive pairwise terms
- $0=\mathrm{V}(\mathrm{I}, \mathrm{I})=\mathrm{V}(0,0)<\mathrm{V}(\mathrm{I}, 0)=\mathrm{V}(0, \mathrm{I})=$ beta
- graph-cuts generalizes to
- $\mathrm{V}(\mathrm{I}, \mathrm{I})+\mathrm{V}(0,0)<\mathrm{V}(0, \mathrm{I})+\mathrm{V}(\mathrm{I}, 0)$
- $x=0, I, 2, \ldots$

