
The Topology and Combinatorics
of Soccer Balls

When mathematicians think about soccer balls,
the number of possible designs quickly multiplies

Dieter Kotschick

With the arrival of the quadrennial
soccer World Cup this summer,

more than a billion people around the
world are finding their television and
computer screens filled with depictions
of soccer halls. In Germany, where the
World Cup matches are being played,
soccer balls are tuming up on all kinds
of merchandise, much of it having noth-
ing to do with soccer.

Although a soccer ball can be put to-
gether in many different ways, there is
one design so ubiquitous that it has be-
come iconic. This standard soccer ball is
stitched or glued together from 32 poly-
gons, 12 of them five-sided and 20 six-
sided, arranged in such a way that every
pentagon is surrounded hy hexagons.
Postmodern paint jobs notwithstandiiig,
the traditional way to color such a ball
is to paint the pentagons black and the
hexagons white. This color scheme was
reportedly introduced for the World
Cup in 1970 to enhance the visibility
of the ball on television, although the
design itself is older.

Most people associate the soccer-ball
image with hours spent on the field or
the sidelines, or perhaps just with ad-
vertisements for sport merchandise. But
to a mathematician, a soccer bail is an
intriguing puzzle. Why does it look the
way it does? Are there other ways of
putting it together? Could the penta-
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gons and hexagons be arranged differ-
ently? Could other polygons be used
instead of pentagons and hexagons?
These questions can be tackled using the
language of mathematics—in particular
geometry, group theory, topology and
graph theory. Each of these subjects pro-
vides concepts and a natural context for
phrasing questions such as those about
the design of soccer balls, and some-
times for answering them as well.

An important aspect of the application
of mathematics is that different ways of
making mathematical sense of everyday
questions lead to different answers. This
may come as a bit of a surprise to read-
ers who are used to schoolbook prob-
lems that have only one right answer.
Properly framing questions is just as im-
portant a part of the art of mathematics
as answering them. Moreover, a genuine
mathematical exploration of an open-
ended question does not stop with find-
ing "the answer" (if there is one), but
involves understanding why the answer
is what it is, and how it changes when
the underlying assumptions are modi-
fied. The questions posed by the design
of soccer balls provide a wonderful il-
lustration of this process.

Soccer Balls and Fullerenes
Mathematicians like to begin by defining
their terms. What, then, is a soccer ball?
An official soccer ball, to be approved by
the Federation Internationale de Foot-
ball Association (FIFA), must be a sphere
with a circumference between 68 and 70
centimeters, with at most a 1.5 percent
deviation from sphericit\' when inflated
to a pressure of 0.8 atmospheres.

Alas, such a definition says nothing
about how the ball is put together, and
is therefore not suitable for a mathemat-
ical exploration of the design. A better
definition is that a soccer ball is approxi-

mately a sphere made of polygons, or
what mathematicians call a spherical
polyhedron. The places where the poly-
gons come together—the \'ertices and
edges of the polyhedron—trace out a
map on the sphere, which is called a
graph. (Such a graph has nothing to do
with graphs of functions. The word has
two completely different mathematical
meanings.) Examined from the perspec-
tive of graph theory, the standard soccer
ball has three important properties:

(1) it is a polyhedron that consists
only of pentagons and hexagons;

(2) the sides of each pentagon meet
only hexagons; and

(3) the sides of each hexagon alter-
nately meet pentagons and hexagons.

As a starting point, then, we can define
a soccer ball to be any spherical poly-
hedron with properties (1), (2) and (3).
If the pentagons are painted black and
the hexagons are painted white, then
the definition does capture the iconic
image, though it does not determine
if uniquely.

This definition places the problem
of soccer ball design into the context of
graph theory and topology. Topology,
often described as "rubber-sheet ge-
ometry," is the branch of mathematics
that studies properties of objects that
are unchanged by continuous defor-
mations, such as the inflation of a soc-
cer ball. For the purposes of topology,
it doesn't matter how long the edges of
a polyhedron are, or whether we are
dealing with a round polyhedron or
one with flat sides.

I first encountered the above defini-
tion in 1983, in a problem posed in the
Bundeswettbewerb Mathematik, a Ger-
man mathematics competition for high
school students. The problem was: Given
properties (1H3), determine how many
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Figure 1. Twelve pentagons and 20 hexagons form a figure known to mathematicians as a truncated icosahedron, to chemists as the buckmin-
sterfullerene molecule—and to nearly everybody else as the standard soccer ball. As this summer's World Cup competition approached, a soc-
cer bail-shaped information pavilion toured the German cities preparing to host World Cup matches. Here the "football globe" makes a stop
in Leipzig. The iconic black and white soccer ball is also an intriguing puzzle amenable to mathematical analysis. Other soccer balls that may
never be seen on the playing field also offer interesting solutions to the mathematical questions posed by the standard design.

pentagons and hexagons a soccer ball is
made of. Thinking about this problem
at the time, I assumed that the ball is a
convex polyhedron in space made up
of regular polygons. Tlnis geometric as-
sumption, together with rules (1), (2) and
(3), implies that there are 12 pentagons
and 20 hexagons. Moreover, there is a
unique way of putting them together,
giving rise to the iconic standard soccer
ball. Without the geometric assumption,
the graph-theory problem has infiiiitely
many other solutions, which have larger
numbers of pentagons and hexagons.

I began thinking about this problem
again after I was invited to give a lec-
ture at a prize ceremony for tbe same
competition in 20D1. Eventually, one of
my postdoctoral fellows, Volker Braun-
gardt, and I found a way to characterize
a!! tlie solutions, a characterization tliat I
will describe below.

interestingly, a related problem arose
in chemistry in the 1980s after the 60-
atom carbon molecule, called the buck-
minsterfullerene or "buckyball," was

discovered. The spatial shape of this C ,
molecule is identical to the standard soc-
cer-ball polyhedron consisting of 12 pen-
tagons and 20 hexagons, with the 60 car-
bon atoms placed at the vertices and the
edges corresponding to chemical bonds.
The discovery of the buckyball, which
was honored by tlie 1996 Nobel Prize for
chemistry, created enormous interest in
a class of carbon molecules called fuller-
enes, which satisfy assumption (1) above
together with a further condition:

(3') precisely three edges meet at
every vertex.

This property is forced by the chemi-
cal bonding properties of carbon. In
addition, assumption (2) is sometimes
imposed to define a restricted class of
fullerenes. Having disjoint pentagons
is expected to be related to the chemi-
cal stability of fullerenes. There are infi-
nitely many fullerene polyhedra—C^,,
was merely the first one discovered as an
actual molecule—and it is quite remark-
able that the two infinite families of poly-

hedra, tbe soccer balls and the fullerenes,
have only the standard soccer ball in
common. Thus (1H3) together witli (3')
give a unique description of the standard
scKcer ball without imposing geometric
assumptions. (Assumptions like regular-
ity in fact imply condition {3')-)

To see that this is so requires a brief
excursion into properties of polybedra,
starting with a beautiful formula dis-
covered by the Swiss mathematician Le-
onhard Euler in the 18th century. Euler's
formula (see "Euler's formula," next page),
a basic tool in graph theory and topol-
ogy, says that in any spherical polyhe-
dron, the number of vertices, v, minus
the number of edges, e, plus the number
of faces,/, equals 2:

v-c+f=2

Let's apply Euler's formula to a poly-
hedron consisting of b black pentagons
and 10 white hexagons. The total num-
ber/of faces isb + w. In all, the penta-
gons have 5b edges, because there are 5
edges per pentagon and b pentagons in
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Figure 2. Soccer-ball design over the years has been driven by the demand for a round ball that holds its shape and by the technology available. Eight
panels of vulcanized rubber were glued together to create the hall at left, used in the earliest soccer championship in the United States in 1863. The
leather ball at center, used in the 1950 World Cup, has a design typical of its era. The small number of large, irregularly shaped flat pieces adversely
affected its roundness. Thanks to improvements in materials and manufacturing, curved pieces in more complicated shapes can now be used. This
year's World Cup ball (right) is made from 14 synthetic-leather panels cut in intricately curved shapes. In graph-theory terms, this ball is a truncated
octahedron. (Historic photographs courtesy of Jack Huckel, National Soccer Hall of Fame; right photograph courtesy of firosportfoto.de.)

all. Similarly, the hexagons have a total
of 6w edges. Adding these two numbers
should give the total number of edges—
except that 1 have counted each edge
twice because each edge lies in two dif-
ferent faces. To compensate I divide by
2, and hence the number of edges is:

Finally, to count the number of verti-
ces, I note that the pentagons have 5/'
vertices in all and the hexagons have
6̂ 1 vertices. In the case of a fullerene,
assumption (X) says that each vertex
belongs to three different faces. Thus if
I compute 5/? + 6w, I have counted each
vertex exactly three times, and hence I
must divide by 3 to compensate:

v = {\/3){5b + 6w)

Substituting these values for/, e
and V into Euler's formula, I find that
the terms involving w cancel out, and
the formula reduces to b = 12. Every
fullerene, therefore, contains exactly
12 pentagons! However, there is no
a priori limit to the number of hexa-
gons, w, and therefore no limit on the
number of vertices. (This is implicit
in the title of a 1997 article on fuller-
enes in American Scientist "Fullerene
Nanotubes: Ĉ  j^,^, |,̂ ^ and Beyond.")
If I impose the additional condition
(2), then I can show that the number
of hexagons has to be at least 20. The
standard soccer ball or buckvball real-

izes this minimum value, for which
the number v of vertices equals 60, cor-
responding to the 60 atoms in the C .̂,
molecule. However, it can be shown
that there are indeed infinitely many
other mathematical possibilities for
fullerene-shaped polyhedra. Which of
these correspond to actual molecules is
a subject of research in chemistry.

For soccer balls, we are allowed to
use only assumptions (l)-(3), but not
(3'), the carbon chemist's requirement
that three edges meet at every vertex.
In this case the number of faces meet-
ing at a vertex is not fixed, but this
number is at least 3. Therefore, the
equation v = (l/3)(5f' + 6w) becomes
an inequnlity: u < (1 /3){5b + 6w). Substi-

Euler's formula

Any non-empty connected finite graph on the sphere satis-
fies Euler's formula v ~ e + / - 2. Here v and e are the num-
bers of vertices and edges, and/is the number of regions
into u'hich the sphere is divided. A proof of Euler 's formula
prtKeeds by repeatedly simplifying the graph by the fol-
lowing two operations:

The first operation consists of deleting any vertex that
meet5 only one edge, and in addition deleting the edge
that meets it (a). This operation does not change the
number of regions, while it decreases both i' and f by 1.
The second operation consists of collapsing a region to
a single vertex, together with all the edges and vertices
on its boundary (b). If the collapsed region had k vertices
on its boundary, then this collapsing reduces v by fc-1,
reduces c by k and reduces/by 1. Thus v - e + fis not
changed by either of the two operations.

A finite iteration of these two simplifications reduces
any graph to a graph with only one vertex and no edges.
Then there is one region, and v - e +f- 1-0 + 1 - 2 .
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tuting into Euler's formula, the terms
involving w again cancel out, leaving
the inequality b > 12. Thus every soc-
cer ball contains at least 12 pentagons,
but, unlike a fullerene, may well con-
tain more.

Also unlike fullerenes, soccer balls
have a precise relation between the
number of pentagons and the number of
hexagons. Counting the number of edg-
es along which pentagons and hexagons
meet, condition (2) says that all edges of
pentagons are also edges of hexagons,
and condition (3) says that exactly half
of the edges of hexagons are also edges
of pentagons. Hence (l/2)(6n') = 5b, or
3iv = 5b. Because b > 12, w is at least 20.
These minimal values are realized by
the standard soccer ball, and the realiza-
tion is combinatorially unique because
of conditions (2) and (3). But there are
also infinitely many other numerical so-
lutions, and the problem arises whether
these non-minimal numerical solutions
correspond to soccer-ball polyhedra.
It turns out that they do, as we'll see
shortly, so that there is indeed an infinite
collection of soccer balls.

Thus we see that there are infinitely
many fuilerenes (satisfying assumptions
(1), (2) and (3')) and infinitely many soc-
cer balls {satisfying (1), (2) and (3)).
However, if we combine the two defini-
tions, there is only one possibility! For
a fullerene, b -12, and for a soccer ball,
5b = 3w. Consequently, for a soccer ball
to also be a fullerene, we must conclude
that 5 X 12 = 3zv, or w = 20. Any soccer
ball that is also a fullerene must therefore
have 12 pentagons and 20 hexagons. It is
known that there are 1,812 distinct fuller-
enes witli 12 pentagons and 20 hexagons,
but 1,811 of them have adjacent penta-
gons somewhere and are therefore not

soccer balls, because they violate condi-
tion (2). The standard soccer ball is the
only one with no adjacent pentagons.

New Soccer Balls from Old
Leaving behind chemistry and fullerene
graphs, let us now consider the crucial
question: What other, nonstandard, soc-
cer balls are there, with more than three
faces meeting at some vertex, and how
can we understand them? It turns out
that we can generate infinite sequences
of different soccer balls by a topological
construction called a branched covering.
You can visualize this by imagining the
standard soccer-ball pattern superim-
posed on the surface of the Earth and
aligned so that there is one vertex at the
North Pole and one vertex at the South
Pole. Now distort the pattern so that one
of the zigzag paths along edges from
pole to pole straightens out and lies on a
meridian, say the prime meridian of zero
geographical longitude (see Figure 4b). It
is all right to distort the graph, because
we are doing "rubber-sheet geometry."

Next, imagine slicing the Earth open
along the prime meridian. Shrink the
sliced-open coat of the Earth in the east-
west direction, holding the poles fixed,
until the coat covers exactly half the
sphere, say the Western Hemisphere. Ei-
nally, take a copy of this shrunken coat
and rotate it around the north-south
axis until it covers the Eastern Hemi-
sphere. Remarkably, the two pieces can
be sewn together, giving the sphere a
new structure of a stKcer ball with tu'ice
as many pentagons and hexagons as
before. The reason is that at each of the
two seams running between the North
and South Poles, the two sides of the
seam are indistinguishable from the two
sides of the cut we made in our original

Figure 4. New soccer balls can be made from existing ones by a mathematical con-
struction called a branched covering. First one chooses a seam of the old soccer ball
along the edges of polygons (a). This seam is straightened out and sliced open (b,
c). The whole surface of the soccer ball is shrunk to cover only a hemisphere (d}. A
second copy of this hemisphere is rotated around and stitched to the first (e, f). This
builds a new soccer ball, which can be deformed as ing. Conforming to the definition
of a soccer ball, black faces in the new ball are adjacent to only white faces (faces that
meet only at vertices are not considered adjacent), and white faces have an alternating
sequence of white and black faces around their edges. (Soccer-ball images in Figures
4, 5,6,9 and 11 were calculated and created by Michael Trott using Mathematica.)

Figure 3. Fullerenes are large carbon mol-
ecules whose shapes are made up of penta-
gons and hexagons that meet three at a time,
in such a way that no two pentagons are
adjacent. Every fullerene contains exactly
12 pentagons, but there is no limit to the
number of hexagons. The simplest fuller-
ene molecule, C^ has the iconic soccer-ball
shape. Other fullerenes, such as C^^^^, have
been made in the laboratory. Mathematically,
the combinatorics of fullerenes is an applica-
tion of Euler's formula.

soccer ball. Therefore, the two pieces fit
together perfectly, in such a way that
the adjacency conditions (2) and (3) are
preserved. (See Eigure 4 for step-by-step
illustrations of this construction.)

The new soccer ball constructed in
this way is called a two-fold branched cov-
ering of the original one, and the poles
are called branch points. The new ball
looks the same as the old one (from the
topological or rubber-sheet geometry
point of view), except at the branch
points. There are now six faces (instead
of three) meeting at those two vertices,
and there are 116 other vertices (the 58
vertices that weren't pinned at the poles,
plus their duplicates), with three faces
meeting at each of them.

There is a straightforward modifica-
tion we can make to this construction.
Instead of taking two-fold coverings.
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Figure 5, Infinitely many soccer balls can be
constructed by the method used in Figure 4.
For example, an eight-fold branched cover-
ing of the standard soccer ball can be built by
using eight copies of the sliced-open coat of
the standard ball to create a soccer ball with
96 pentagons and 160 hexagons. The eight
pieces fit together like sections of an orange.
The author and his collaborator Volker Braun-
gardt have proved that every soccer ball is a
branched covering of the standard one.

Figure 6. The proof that branched coverings
produce all soccer balls depends on an analy-
sis of the sequence of colors around any ver-
tex. Because at least one of the edges meeting
at each vertex bounds a pentagon (black),
there is no vertex where only hexagons
(white) meet. The sequence of faces around
a vertex is always black-white-white, black-
white-white, and closes up after a number of
faces that is a multiple of three.

we can take rf-fold branched co\'erings
for any positive integer d. Instead of
shrinking the sphere halfway, we imag-
ine an orange, made up of d orange sec-
tions, and for each section we shrink a
copy of the coat of the sphere so that
it fits precisely over the section. Once
again the different pieces fit together
along the seams (see Figure 5). For all of
this it is important that we think of soc-
cer halls as comhinatorial or topologi-
cal—not geometric—objects, so that the
polygons can be distorted arbitrarily.

At this point you might think that
there could be many more examples of
soccer balls, perhaps generated from the
standard one by other modifications, or

perhaps sporadic examples having no
apparent connection to the standard soc-
cer ball. But this is not the case! Braun-
gardt and I proved that every soccer ball
is in fact a suitable branched co\'ering of
the standard one (possibly with slightly
more complicated branching than was
discussed above).

The proof involved an interesting in-
terplay between the local structure of
soccer balls around each vertex and the
global structure of braiiched coverings.
Consider any vertex of any soccer ball
(see Figure 6). For every face meeting this
vertex, there are tw.'o consecutive edges
that meet tliere. Because at least one of
those two edges bounds a pentagon, by
condition (3), there is no vertex where
only hexagons meet. Thus at every ver-
tex there is a pentagon. Its sides meet
hexagons, and the sicies of the hexagons
alternately meet pentagons and hexa-
gons. This condition can be met only if
the faces are ordered around the ver-
tex in the sequence black, vvliite, white,
black, white, white, etc. (Remember that
the pentagons are black.) In order for the
pattern to close up around the vertex, the
number of faces that meet at tliis vertex
must be a multiple of 3. This means that
locally, around aiiy vertex, the structure
looks just like that of a branched cover-
ing of the standard stKcer ball around a
branch point. Covering space theory—
the part of topology that investigates re-
lations between spaces that look locally
alike—then enabled us to prove that any
stxcer ball is in fact a branched covering
of tlie standard one.

Beyond Pentagons and Hexagons
To mathematicians, generalization is
second nature. Even after something
has been proved, it may not be appar-
ent exactly why it is true. Testing the
argument in slightly different situations
while probing generalizations is an im-
portant part of really understanding it,
and seeing which of the assumptions
used are essential, and which can be
disper\sed with.

A quick look at the arguments above
reveals that there is very little in the
analysis of soccer balls that depends on
their being made from pentagons and
hexagons. So it is natural to define "gen-
eralized soccer balls" allowing other
kinds of polygons. Imagining that we
again color the faces black and white,
we assume that the black faces have k
edges, and the white faces have / edges
each. For conventional soccer balls, k
equals 5, and / equals 6. As before, the

edges of black faces are required to meet
only edges of white faces, and the edges
of the white faces alternately meet edges
of black and white faces. The alternation
of colors forces / to be an even number.

Going one step further in this process
of generalization, we can require that
every nth edge of a white face meets a
black face, and all its other edges meet
white faces. This forces / to be a mul-
tiple of //; that is, I - m x u for some
integer m. Of course we still require that
the edges of black faces meet only white
faces. Let us call such a polyhedron a
generalized soccer ball. Thus the pattern
of a generalized soccer ball is described
by the three integers (k, m, n), where k is
the number of sides in a black face, / -
m X n is the number of sides in a white
face, and every nth side of a white face
meets a black face. The first question
we must ask is: Which combinations
of k, HI and n are actually possible for a
generalized soccer ball? It turns out that
the answer to this question is closely
related to the regular polyhedra.

Regular Polyhedra
Ancient Creek mathematicians and phi-
losophers were fascinated by the regular
polyhedra, also known as Platonic sol-
ids, attributing to them many mystical
properties. The Platonic solids are poly-
hedra with the greatest possible degree
of symmetry: All their faces are equilat-
eral polygons with the same number
of sides, and the same number of faces
meet at every vertex. Euclid proved in
his Elements that there are only fi\'e such
polyhedra: the tetrahedron, the cube,
the octahedron, the dodecahedron and
the icosahedron (sec Figure 7).

Although Euclid used the geometric
definition of Platonic solids, assuming
all the polygons to be regular, modem
mathematicians know that the argu-
ment does not depend on the geometry.
In fact, a topological argument using
only Euler's formula shows that there
are no possibilities other than the five
shown in Eigure 7.

Eacli Platonic solid can be described by
two numbers: tlie number K of vertices
in each face and the number M of faces
meeting at each vertex. If /"is the number
of faces, then the total number of edges is
e = (1/1)K x/, and the number of \'ertices is
V = (1/M)K xf. Substituting these values in
Euler's formLila/- ii + e = 2, we find that
elementary algebra leads to the equation:

Kf
X + J_
2K 2M
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The possible solutions can be deter-
mined quite easily. The complete list of
possible values for the pairs (K, M) is:

(3,3) for the tetrahedron
(4,3) and (3,4) for the cube and the
octahedron
(5, 3) and (3, 5) for the dodecahe-
dron and the icosahedron.

Strictly speaking, this is only the list of
genuine polyhedra satisfying the above
equation. Tlie equation does have other
stilutions in positive integers. These so-
lutions correspond to so-called degener-
ate Platonic solids, which are not bona
fide polyhedra. One family of these
degenerate polyhedra has K=2 and M
arbitrary, and the other has M-2 and K
arbitrary. The first case can be thought
of as a beach ball that is a sphere di-
\'ided into M sections in the marmer of
a citrus fniit.

Finding Generalized Soccer Balls
The Platonic solids give rise to general-
ized soccer balls by a procedure known
as truncation. Suppose we take a sharp
knife and slice off each of the comers of
an icosahedron. At each of the 12 verti-
ces of the icosahedron, five faces come
together at a point. When we slice off
each vertex, we get a small pentagon,
with one side bordering each of the faces
that used to meet at that vertex. At the
same time, we change the shape of the
20 triangles that make up the faces of the
icosahedron. By cutting off the comers
of the triangles, we turn them into hexa-
gons. The sides of the hexagons are of
two kinds, which occur alternately: the
remnants of the sides of the original tri-
angular faces of the icosahedron, and the
new sides produced by lopping off the
corners. The first kind of side borders
another hexagon, and the second kind
touches a pentagon. Tn fact, the polyhe-
dron we have obtained is nothing but
the standard soccer ball. Mathematicians
call it the truncated icosahedron.

The same truncation procedure
can be applied to the other Platonic
solids. For example, the truncated
tetrahedron consists of triangles and
hexagons, such that the sides of the
triangles meet only hexagons, while
the sides of the hexagons alternately
meet triangles and hexagons. This is a
generalized soccer ball with /r-3, / H - 3 ,
n-1 (and 1 - mx n - 6). The truncated
icosahedron gives values for k, m and
n of 5, 3 and 2. The remaining trunca-
tions give (k, in, n) - (4, 3, 2) for the oc-
tahedron, (3,4, 2) for the cube, and (3,

cube
tetrahedron

octahedron

icosahedron dodecahedron

Figure 7. The five basic Platonic solids shown here have been known since antiquity. Exam-
ples of all generalized soccer-ball patterns can be generated by altering Platonic solids.

5, 2) for the dodecahedron. In addition,
we can truncate beach balls to obtain
generalized soccer balls with (k, m, n)
= (k, 2, 2), where k can be any integer
greater than 2.

Are these the only possibilities for
generalized soccer ball patterns, or are
there others? Again, we can answer
tliis question by using Fuler 's formula,

f-c + v = 2. Just as we did for the Pla-
tonic solids, we can express the number
of faces, edges and v'ertices in terms of
our basic data. Here tliis is the number
b of black faces, the number zv of white
faces, and the parameters k, m and n.
Now, because the number of faces meet-
ing at a vertex is not fixed, we do not
obtain an equation, but an inequality
expressing the fact that the number of
faces meeting at each \'ertex is at least 3.
The result is a constraint on k, m and n
that can be put in the following form:

u) = {4, 4, 1), that satisfy the inequality
for suitable values of b but do not arise
from generalized soccer balls. However,
Braungardt and 1 were able to determine
the values of (k, m, n) that do have real-
izations as soccer balls; these are shown
in the table in Figure 9, where we also
illustrate the smallest realizations for
a few types. Notice that all of the ones
with n-2 come from truncations of Pla-
tonic solids.

The polyhedra listed here have vari-
ous interesting properties, of which I'll
mention just one. Besides entry 10 in
this table, which is of course the stan-
dard soccer ball, the table contains three

kb 12 " 2/c 2 m

This may look complicated, but it can
easily be analyzed, just like the equation
leading to the Platonic solids. It is not
hard to show that n can be at most equal
to 6, because otherwise the left-hand side
would be greater than the right-hand
side. With a little more effort, if is pos-
sible to compile a complete list of all the
possible solutions in integers k, in and n.

Alas, the story does not end there.
There are some triples, such as (k, m.

Figure 8. Chopping off comers, or truncation,
converts any Platonic solid into a general-
ized soccer ball. In particular, the standard
soccer ball is a truncated icosahedron. After
truncation, the 20 triangular faces of the ico-
sahedron become hexagons; the 12 vertices,
as shown here, turn into pentagons.
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type

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

k

3

3

4

3

5

3

3

4

3

5

>3

3

4

5

>3

>3

>3

3

4

5

m n

3

4

3

5

3

3

4

3

5

3

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1
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octahedron
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truncated dodecahedron

truncated icosahedron = standard soccer ball

truncated beach ball

variation on the tetrahedron

variation on the cube

variation on the dodecahedron

partially truncated beach ball

double tin can

zigzag tin can

subdivision of the tetrahedron

subdivision of the cube

subdivision of the dodecahedron

4 4

8 6

6 8

20 12

12 20

4 4

8 6

6 8

20 12

12 20

2 k

4 6

6 12

12 30

1 k

2 2k

2 2k

4 12

6 24

12 60
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Figure 9. Generalized soccer balls fall into 20 types. In this table, k represents the number of sides in any black face; the product in x ti is the
number of sides in any white face. Every side of a black face meets a white face. Every »th side of a white face meets a hlack face. The columns
b and w represent the number of black and white faces in the simplest representative of each type. For the types with n=2, every generalized
soccer ball of that type is a branched covering of the simplest one. However, this is not true for other values of ii. The minimal realization of
type 8 is combinatorially the same as the 2006 World Cup ball shown in Figure 2, whereas type 10 is the standard soccer ball.

other fullerenes: numbers 14 and 20,
and the case k=6 of entry 17. The num-
bers of hexagons in these examples are
30, 60 and 2, respectively. (Note that in
the latter case the color scheme is re-
versed, so the hexagons are black rather

Figure 10. The tetrahedron with just one black
face (a} is the minimal realization of soccer-
ball type 15 in Figure 9, where (k, m, n) = (3,
1, 3). Another realization, an octahedron with
two opposite black faces (b), is not a branched
covering of a, showing that it is not possible
to produce all generalized soccer balls with
«>2 using branched coverings.

than white.) The numbers of carbon at-
oms are 80,140 and 24, respectively. The
last of these is the only fullerene with 24
atoms. In the case of 80 atoms, there
are 7 different fullerenes with disjoint
pentagons, but only one occurs in our
table of generalized soccer balls. For 140
atoms, there are 121,354 fullerenes with
disjoint pentagons.

Braungardt and I discovered some-
thing very intriguing when we tried to
see whether every generalized soccer
ball comes from a branched covering
of one of the entries in our table. This is
true, we found, for all the triples with
n=2, that is, for generalized soccer balls
for which black and white faces alter-
nate around the sides of each white
face. However, it is not true for other
values of n\ The easiest example dem-
onstrating this failure arises for the tri-
ple (k, in, n) = (3,1, 3), meaning that we
have black and white triangles arraiiged

in such a way that the sides of each
black triangle meet only white ones,
and each white triangle has exactly one
side that meets a black one. The mini-
mal example is just a tetrahedron with
one face painted black (Figure lOa). An-
other realization is an octahedron with
two opposite faces painted black (Figure
lOb). This is not a branched covering of
the painted tetrahedron! A branched
covering of the tetrahedron would have
3, 6, 9, ... faces meeting at every ver-
tex—but the octahedron has 4.

The reason for this strange behavior is
a subtle difference between the case H=2
and the cases n>2. In the tetrahedron
example, there are two different kinds
of vertices: a vertex at which only white
faces meet, and three vertices where one
black and two white faces meet. More-
over, the painted octahedron has yet an-
other kind of vertex. But in the case n=2,
all the vertices look essentially the same.
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Figure 11. Toroidal soccer balls are of two
kinds: those that are branched coverings
of spherical ones, and those that are not. A
branched double cover of the standard spheri-
cal soccer ball produces a toroidal ball with 24
black and 40 white faces (a). Opening up the
standard soccer ball along two edges, deform-
ing it to a tube and then matching the ends of
the tube produces a toroidal soccer ball with
12 black and 20 white faces (b>. This pattem
cannot be obtained as a branched covering.

E\'er\' vertex lias the same sequence of
colors, which goes black, white, white,
black, white, white, ..., with only the
length of the sequence left open. Thus
the adjacency conditions provide a de-
gree of control over the local structure
of any generalized soccer ball with ii=2.
This control is lacking in the n>2 case.
At present, therefore, it is possible to de-
scribe all generalized soccer balls with
n=2: They are branched coverings of
truncated Platonic solids. But there is no
simple way to produce all the general-
ized soccer balls with n>2.

Toroidal Soccer Balls
From a topologist's point of view,
spherical scKcer balls are just one par-
ticular example of maps drawn on sur-
faces. Because the definition of soccer
balls through conditions (1), (2) and (3)
does not specify that soccer-ball poly-
hedra should be spherical, there is a
possibility that they might also exist in
other shapes. Besides the sphere, there
are infinitely many other surfaces that
might occur: the torus (which is the sur-
face of a doughnut), the double torus,
the triple torus (which is the surface of a
pretzel), the quadn.iple torus, etc. These
surfaces are distinguished from one an-
other by their gemis, informally known
as the number of holes: The sphere has
genus zero, the tonts has genus one, the
double torus has genus two, and so on.

There are scxcer balls tif all genera,
because every surface is a branched cov-
ering of the sphere (in a slightly more
general way than we discussed before).
By arranging the branch points to be
vertices of some soccer ball graph on
the sphere, we can generate soccer ball
graphs on any surface. Figure 11a shows
a toroidal soccer ball obtained from a

tv\'i>-fc>ld branched covering of the stan-
dard spherical ball. In this case there are
four branch points. Note that a two-fold
branched co\'ering always doubles the
number of pentagons and hexagons.

Flere is an easier construction of a
toroidal soccer ball. Take the standard
spherical soccer ball and cut it open
along two disjoint edges. Opening
up the sphere along each cut produc-
es something that looks rather like a
sphere from which two disks have been
removed. This surface has a soccer-ball
pattern on it, and the two boundary
circles at which we have opened the
sphere each have two vertices on them.
If the cut edges are of the same type,
meaning that along both of them two
white faces met in the original spherical
soccer ball, or that along both of them a
black face met a white face, then we can
glue the two boundary circles together
so as to match vertices with vertices.
(See Figure l ib for step-by-step illustra-
tions of this construction.) The surface
built in this way is again a torus. It has
the structure of a polyhedron that satis-
fies conditions (1), (2) and (3), and is
therefore a soccer ball.

This second toroidal soccer ball is not a
branched covering of the standard spher-
ical ball, because it has the same numbers
of pentagons and hexagons (12 and 20
respectively) as the standard spherical
ball. For a branched covering these num-
bers would be multiplied by the degree
of the covering. In tfiis case, the failure
is not caused by loss of control over the
local structure of the pattem (as in the
previous section), but by a global prop-
erty of the torus (the hole). Thus the basic
result that all spherical soccer balls are
branched coverings of the standard one
is not true for soccer bails with holes.

Coda
Soccer balls provide ample illustra-
tions of the intimate connection that
exists between graphs on surfaces
and branched coverings. This circle of
ideas is also connected to subtle ques-
tions in algebraic geometry, where the
combinatorics of maps on surfaces en-
capsulates data from number theory
in mysterious ways. Following the
terminology introduced by Alexan-
der Grothendieck, one of the leading
mathematicians of the 20th century,
the relevant graphs on the sphere are
nowadays called dcssins d'eiifants.
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