
Final Exam CSCI1950-J: Introduction to Computational Geometry Spring 2011

CSCI1950-J: Final Exam (125 points; 1 point = 1 point on
previous exams)

Out: Tuesday, May 3, 2011
Problem 5 updated to make Report() possible only for the root interval

Due: Tuesday, May 10, 2011
Please return your writeup for this exam to Saara Moskowitz in CIT 546 by 4pm on the due date.

David will hold hours Sunday, May 8 from 2pm to 4 in CIT 227.

Readings: Section 8.8 of the textbook

This is a strictly non-collaborative assignment. You may only discuss the questions
and answers with the course staff. You are permitted to use the textbook, but no

external resources.

All work should be typed, preferably in LATEX.

“Analyzing” an algorithm means proving it correct and bounding its running time.

Problem 1 (25 points)

Consider the following problem. The input consists of an n-edge convex polygon P and a line `,
both in the Euclidean plane. If ` does not intersect P , then the output is the vertex q ∈ P closest
to `. If ` does intersect P , then the output is ⊥.

Design and analyze algorithms that preprocess P and then use the results of preprocessing so
as to support repetitive queries with different `. Preprocessing should take time O(n). Each query
should take time O(log n).

Problem 2 (25 points)

The known linear-time algorithms for computing the convex hull of a simple polygon are somewhat
subtle. In this problem, we will explore a simpler but incorrect algorithm.

Let’s say that a polygon (not necessarily simple) on vertices p1, . . . , pn is of Graham type in case
for all 1 ≤ i ≤ n, the walk pi−1pipi+1 is a “left turn”, where we take p0 = pn and pn+1 = p1. The
Graham scan algorithm in essence starts with a star-shaped polygon on the given points and then
iteratively removes vertices pi such that pi−1pipi+1 is not a left turn. The final polygon, namely
the convex hull, is both simple and of Graham type.

Suppose now that the initial polygon is simple but not star-shaped. The final polygon is still
necessarily of Graham type, but it is not necessarily simple. Give an example of a simple polygon
and a sequence of vertex removals satisfying Graham’s condition resulting in a non-simple polygon
of Graham type. (Hint: work backward.)

Problem 3 (25 points)

Design and analyze an algorithm that given 3n points a1, b1, c1, . . . , an, bn, cn in the Euclidean plane,
finds i, j, k so as to minimize the radius of the circle passing through ai, bj , ck. Get the best running
time you can.

1



Final Exam CSCI1950-J: Introduction to Computational Geometry Spring 2011

Problem 4 (25 points)

Design and analyze an efficient preprocessing/query algorithm pair for the following problem. Given
are n fixed line segments in the Euclidean plane. After preprocessing the segments, answer queries
of the form “Does line ` intersect any segment?”

Problem 5 (25 points)

Given n axis-aligned rectangles R1, . . . , Rn, determine the area of the set{
p : p ∈ R2,

∣∣{i : p ∈ Ri}
∣∣ ≡ 1 (mod 2)

}
.

In other words, what area of the plane is covered by exactly an odd number of rectangles?
There is an efficient sweep-line algorithm based on a data structure for the dynamic version of

the problem in one dimension. This data structure in turn can be implemented efficiently by means
of a segment tree. Your task is to write pseudocode for the following methods, which span the
non-generic aspects of this data structure.

• Initialize(k). The nodes of the segment tree are numbered 1, . . . , k. This method is called
once, before any of the other methods. Its running time should be O(k).

• Report(). This method returns the total length covered by exactly an odd number of intervals.
Its running time should be O(1).

• Toggle(i)

• Update(j, `, r). Observe first that insertion and removal are indistinguishable. When inserting
an interval [a, b], code that you don’t have to write finds a list of nodes i1, . . . , im such
that [a, b] is a pairwise almost disjoint union of the corresponding segments. It invokes
Toggle(i1), . . . , Toggle(im). Then, for all ancestors j of i1, . . . , im in the order those ancestors
would be visited by a post-order traversal, the other code invokes Update(j, `, r), where ` is
the left child of j and r is the right child.

The running time of both Toggle and Update should be O(1).

One method is provided for you: Length(i), which returns the length of the segment corresponding
to node i.

Let’s consider a possible execution. Code that you don’t have to write constructs the following
segment tree and calls Initialize(15).

11: [5, 6]

10: [4, 6]

13: [6, 7]

12: [4, 8]

15: [7, 8]

14: [6, 8]

1: [0, 1] 3: [1, 2]

2: [0, 2]

5: [2, 3]

4: [0, 4]

7: [3, 4]

6: [2, 4]

9: [4, 5]

8: [0, 8]

2



Final Exam CSCI1950-J: Introduction to Computational Geometry Spring 2011

Suppose that the interval [1, 6] is to be inserted. Code that you don’t have to write decomposes
[1, 6] = [1, 2] ∪ [2, 4] ∪ [4, 6] and makes the following calls.

Toggle(3)
Toggle(6)
Toggle(10)
Update(2, 1, 3)
Update(4, 2, 6)
Update(12, 10, 14)
Update(8, 4, 12)

At this point, Report() is 5. Suppose now that the interval [3, 8] is to be inserted. The other code
decomposes [3, 8] = [3, 4] ∪ [4, 8] and makes the following calls.

Toggle(7)
Toggle(12)
Update(6, 5, 7)
Update(4, 2, 6)
Update(8, 4, 12)

At this point, Report() is 4, since the intervals covered an odd number of times are [1, 3] and [6, 8].
We finish by removing [1, 6] with the same sequence of calls that inserted it. Now, Report() = 4.

3


