
CS195V Project 1 - Life

February 2, 2012

1 Overview

If you took CS31, you might remember the �Life� project, which was an im-
plementation of John Conway's cellular automaton. Now, we will implement a
similar program using OpenGL and GLSL. Since each cell's next state can be
determined in parallel, the algorithm for Life transfers well to the GPU. Using
a large framebu�er as the simulation board, we will be able to simulate a huge
number of cells at high speeds.

This project is due at 11:59PM on the day of class two weeks after the
assignment date (February 14).

To get the support code, you will be using our very advanced version control
system GOCP-R also known as �good ol' cp -r�. The support code is in the
/course/cs195v/gpusupport directory.

Before you run the code, you will have to run cmake once to create the
proper �les for compilation. Just run �cmake .� in the gpusupport directory
after you have copied it over. You will also want to modify your Qt project
settings to point to the correct executable so that you can easily run it from
QtCreator. The executable should be located at gpusupport/projects/life/life.

2 Requirements

You will need to implement a working simulation of Conway's game of life. The
main purpose of this assignment is to be a refresher for OpenGL and GLSL, and
to familiarize yourself with the new language features. Thus, a good portion of
the assignment will focus on setting up the infrastructure to run your simulation,
i.e. Vertex Bu�er Objects (VBOs), Framebu�ers, and Shaders.

The computation part of this assignment should not be too di�cult, so
we expect a good deal of work on the visualization slide. Try to experiment
with di�erent shaders and post processing e�ects, and be creative with your 3D
visualization. You want to be able to present this in demo reel!

Note that you probably could do all of this project in WebGL if you wished.
We will not stop you, but keep in mind that future projects will make use of
new OpenGL features not yet supported by WebGL. That said, for this project
it should be �ne.

1



You should avoid using deprecated OpenGL features whenever possible. This
includes glBegin/glEnd primitive speci�cation and the GL matrix stack. If you
are not sure if a feature is deprecated, ask the TAs.

3 Technique

To hold our simulation states, we will require some sort of array, in our case, a
framebu�er. Each pixel in the framebu�er can represent a single cell. With two
framebu�ers, we can hold the current simulation step and calculate the next
one. To execute the simulation algorithm on each cell, we can draw a full screen
quad and use a specialized fragment shader.

4 Instructions

You will need to make modi�cations to the primitive class to set up VBOs and
VAOs for your choice of geometric primitives. For the Life simulation itself, you
should modify the lifeengine class.

5 Tips

To create a geometric primitive...

• Set up the vertex array

� glGenVertexArrays

� glBindVertexArray

• Set up the vertex bu�ers

� glGenBu�ers

� glBindBu�er

� glBu�erData

• Set vertex attributes

� glEnableVertexAttribArray

� glVertexAttribPointer

You will also need to set up your shader to bind certain vertex attributes with
the shader's input parameters using glBindAttribLocation. You need to bind all

of the attributes before you link the shader program.

To run your simulation, you will need to draw a full screen quad (both for
simulation and for actual display). To create a quad, you will need a GLQuad

2



Object which is the size of your window. To make it fullscreen, call the vsm-
lOrtho() method on to set up an orthographic projection, then draw the quad.

In your simulation shader, you will have to index into the neighbors of a
particular cell, given only the current cell's texture coordinate. In this case, you
may �nd the textureO�set() method of GLSL to be useful.

For your 3D visualization, you may want to draw many of one type of prim-
itive to represent your cells in 3D space. In this case, you may �nd the draw(int
instances) method in your primitive class to be useful. glDrawInstanced will
draw a speci�ed number of instances of your primtive, and you will have access
to an instance ID in your shader, so, for example, if you had 10 primitives and
wanted to draw them in a line, you could use instanced drawing and translate
them in the vertex shader using the instance ID to determine the amount.

6 Support Code

The support code provides a (relatively) easy way to spawn cells. Use the enter
key to start and stop the simulation, left and right arrows to cycle through
di�erent patterns, left click to apply the pattern and right click to erase. Use the
backspace key to switch between 2D and 3D visualization. We have provided a
simple shader program that colors everything white and a simple quad primitive
class. Use these as an example to build your own shaders and primitives.

3


