
CSCI1950V Project 5 : Real-time Video

Filtering

April 4, 2012

1 Summary

In this project, you will use CUDA to quickly perform �ltering operations on
frames from a video stream. The �ltering concepts are very similar to those
in CS123's �lter assignment. You will probably want to try implenting similar
�lter types and mathematical computations.

This project is due at 11:59PM on April 20, 2012.

2 Requirements

You must implement convolution �ltering with variable width kernels, and pro-
vide a way to construct such kernels for at least one such �ltering e�ect (blur,
for example). You convolution must handle edge cases either by adjusting �lter
weights or repeating/extending the image. Darkening at the edges of the image
with a blur, for example, is not okay.

Feel free to add UI elements for control over �lter parameters, and we encour-
age you to use your �lters for exciting postprocess e�ects (bloom, for example).

You must implement some sort of shared memory usage. You can only spawn
up to 512 threads per block on our cards, and there are usually more than 512
pixels in the video frame, so you will need to spawn multiple thread blocks.
If each thread block operates on a certain part of the destination image, you
should only need a subset of the original image to run your �ltering operations.
The actual shared memory scheme and copying mechanics are up to you, as is
your grid/block/thread structure.

Turn in with your code some data and charts about your application perfor-
mance with di�erent kernel sizes, grid/block sizes, and shared memory vs global
memory usage. CUDA events can help you to benchmark performance of your
application (see page 34, section 3.2.5.6.2 of the CUDA C programming guide).

1



3 Support Code

You can copy the support code from /course/cs195v/cudasupport. We provide
an example kernel to invert an image. The code can play video �les from a
number of sources, including the internet. Use a website like keepvid.com to
convert youtube links into readable links for the program.

4 Tips

• If using a separable �lter, you should call cudaDeviceSynchronize() be-
tween �ltering the rows and the columns to make sure that the �rst kernel
�nished executing before you start the second

• Similarly, you should call __syncthreads() in between copying shared
memory and using it

• To add a new .cu �le to the qt project, you should add it to the CUDA_SOURCES
and OTHER_FILES variables in the qt project �le, not SOURCES, since
.cu �les must be compiled separately by nvcc

2


