
CS195V Week 10
Introduction to CUDA

Plan

● There's about a month before reading period
● We plan to spend one or two lectures on

CUDA introductions, then...
○ Anyone want to present?

● Intro CUDA project will go out soon
○ Video filtering
○ Should be pretty simple

CUDA

General Purpose GPU Programming

● With the introduction of the unified device
architecture (UDA) GPU hardware was
made generic
○ No longer specific hardware for each shader stage
○ Same hardware is responsible for all shader stages
○ Much more generic purpose hardware

● OpenCL and CUDA are the main GPGPU
languages today (DirectCompute was
recently introduced by MS)
○ Very similar languages - people tend to use CUDA

more even though it is NVIDIA specific (more
support / slightly better performance)

CUDA

● Compute Unified Device Architecture
● Released by NVIDIA first in 2007

○ Only supported on 8 series cards and later
● Framework for general purpose computation

on the GPU
● Written mostly like C, so easy to convert

over
● But lots of little caveats

○ The C programming guide at http://developer.
download.nvidia.
com/compute/DevZone/docs/html/C/doc/CUDA_C_P
rogramming_Guide.pdf tells you pretty much all you
need to know, but it's long and boring

http://www.google.com/url?q=http%3A%2F%2Fdeveloper.download.nvidia.com%2Fcompute%2FDevZone%2Fdocs%2Fhtml%2FC%2Fdoc%2FCUDA_C_Programming_Guide.pdf&sa=D&sntz=1&usg=AFQjCNG14KYRevDRJdR70PhlaevjRie35g
http://www.google.com/url?q=http%3A%2F%2Fdeveloper.download.nvidia.com%2Fcompute%2FDevZone%2Fdocs%2Fhtml%2FC%2Fdoc%2FCUDA_C_Programming_Guide.pdf&sa=D&sntz=1&usg=AFQjCNG14KYRevDRJdR70PhlaevjRie35g
http://www.google.com/url?q=http%3A%2F%2Fdeveloper.download.nvidia.com%2Fcompute%2FDevZone%2Fdocs%2Fhtml%2FC%2Fdoc%2FCUDA_C_Programming_Guide.pdf&sa=D&sntz=1&usg=AFQjCNG14KYRevDRJdR70PhlaevjRie35g
http://www.google.com/url?q=http%3A%2F%2Fdeveloper.download.nvidia.com%2Fcompute%2FDevZone%2Fdocs%2Fhtml%2FC%2Fdoc%2FCUDA_C_Programming_Guide.pdf&sa=D&sntz=1&usg=AFQjCNG14KYRevDRJdR70PhlaevjRie35g

The Fermi Device Architecture

● The warp
schedulers
dispatch warps
(groups of 32
threads) to the
shader cores

● GTX 460 has 336
shader cores or
stream processors
@ 1350 MHz
○

Getting it to work

● You need the CUDA toolkit from NVIDIA
○ /contrib/projects/cuda-toolkit/ (Toolkit)
○ /contrib/projects/cuda-sdk/ (SDK)

● Your kernel and kernel launching code goes
in a .cu file (headers can go in .cuh)
○ Compiled separately by nvcc

● Tell your makefile what is CUDA code and
what is C/C++ code
○ We do it for you, but the NVIDIA code samples have

example makefiles, don't worry, they're short and
simple

Some vocabulary that you might see

● Host: The regular computer
● Device: The GPU
● Kernel: A function made to be executed

many times in parallel on the GPU
○ Origins in stream processor programming, where a

kernel function is applied to each element in the
stream (SIMD)

○ Shaders are a specific type of kernel
● nvcc: The NVIDIA compiler for CUDA code
● ptx: GPU assembly language

○ nvcc compiles your kernel to ptx first, and then ptx to
binary code

CUDA program structure

● Most CUDA programs operate like...
○ Copy some data to Device memory
○ Kernel launch (run kernel function on some data)
○ Wait for kernels to finish
○ Copy data back to Host memory
○ Keep going your merry way

● It's a simple model, but you can do a lot of
things with it
○ Parallelization is implicit - your kernel function is

launched thousands of times (for each piece of data)
● Also it means that much of your CUDA code

will look similar (or copy pasted verbatim)

CUDA Threading Model

● CUDA programs are a hierarchy of concurrent
threads
○ Threading is subdivided into blocks, each of which are

then subdivided into threads
○ Choice of subdivision is up to you!
○ Note that (num of blocks) x (threads per block) = total

number of threads
● Choosing the number of threads per block and

number of blocks can be tricky
○ Largely depends on your data, but different numbers

can have different performance (more on this later)
○ Note that the hardware limits number of blocks in a

launch to 65,535 and the number of threads per block
depends on the GPU (about 512)

Some more vocabulary

● Thread: A single execution thread, as you
would expect, runs on a single GPU
microprocessor

● Thread Block: A group of threads that will be
issued the same instructions at the same
time, they can also share some memory
○ Note that the order of block execution is random

● Grid: A group of all of the thread blocks that
you are running

● Usually you know how many total threads
you want to launch, so the question is, how
do you partition them into blocks?

A Simple Kernel
#include <cuda.h>

__global__ void kernelfunction(float *a, int N)

{

 int idx = blockIdx.x*blockDim.x + threadIdx.x;

 if (idx<N) {

a[idx] = a[idx] + 1;

 }

}

● Given an array of floats and the array length, this kernel adds one to each value
● blockIdx, blockDim, and threadIdx are built in variables

○ blockIdx.x/y/z is the current block index
○ blockDim.x/y/z is the block dimension (size of block)
○ threadIdx.x/y/z is the current thread in the block

● So each thread in each block doubles a value in a
● We need to check if idx < N to prevent writing past the array

○ If we start the kernel with more total threads than array elements (ie. the number elements may
not be evenly divisible into blocks / threads per block)

A Simple Kernel

● __global__ keyword defines a function as
being a kernel run on the device that can be
launched from the host
○ __device__ can be used for subroutines launched

from the device run on the device (gets compiled by
nvcc and gcc)

● Note that recursion is supported only on
newer devices (compute capability 2+)
○ But you should avoid using it (may see up to 30%

performance hit)
● Now to run the kernel...

Launching the Kernel
int c_kernel_launch(float *a_h, int N)
{
 float *a_d; // pointer to device memory
 int i;
 size_t size = N*sizeof(float);
 // allocate array on device
 cudaMalloc((void **) &a_d, size);
 // copy data from host to device
 cudaMemcpy(a_d, a_h, sizeof(float)*N, cudaMemcpyHostToDevice);
 // do calculation on device:
 // Compute execution configuration
 int blockSize = 4;
 int nBlocks = N/blockSize + (N%blockSize == 0?0:1);

 // kernel launch
 kernelfunction <<< nBlocks, blockSize >>> (a_d, N);

 // Retrieve result from device
 cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
 // cleanup
 cudaFree(a_d);
}

><><><><><><><><><><><><><><><

● The cudaMalloc/Memcpy/Free work like
you'd expect, except they work on device
memory, more on this later

● You see the C-style function launch with
arguments as usual, but sandwiched in
between are angle brackets?!

● These determine the structure of your
threads

● This structure can be important from a
performance perspective

● Also some more arguments (optional)
○ Shared memory allocations, more on this later
○ Stream organization, probably not more on this later

More on Grid and Block Dimensions

● Grids and Blocks can be 1D, 2D, or 3D
○ You may want different dimensions depending on

the format of your data
○ In this case we've used a 1D grid

● Specify the dimensions of your grid and
blocks using int or dim3

● The kernel call is then kernel<<<gridDim,
BlockDim>>>(args)

● You can access the block index within the
grid with blockIdx, the block dimensions with
blockDim, and the thread index in the block
with threadIdx

Example 2D and 3D grids

__global__ void invert(float *image) {
 int x = threadIdx.x + blockIdx.x * blockDim.x;
 int y = threadIdx.y + blockIdx.y * blockDim.y;
 int idx = y * blockDim.x * gridDim.x + x;
 image[idx] = 1.0 - image[idx];
}

void launch_kernel(float *image)
{
 // ... move host memory to device ... //
 int threadsPerBlock = 16;
 dim3 blocks(512 / threadsPerBlock, 512 / threadsPerBlock);
 dim3 threads(threadsPerBlock, threadsPerBlock);
 invert<<<blocks, threads>>>(d_image);

}

A Sample 2D Kernel

Occupancy

● So how many threads/blocks do you want?
● Number of threads per block should be a

multiple of 32 because of the architecture
○ How many depends on how much sharing needs to

happen between threads in a block
● Total number of blocks depends on size of

block and the size of your data
● You can use cudaGetDeviceCount() and

cudaGetDeviceProperties() to learn more
about the specifics of your system
○ If you really want to optimize, check out the

occupancy calculator at http://developer.download.nvidia.
com/compute/cuda/CUDA_Occupancy_calculator.xls

http://www.google.com/url?q=http%3A%2F%2Fdeveloper.download.nvidia.com%2Fcompute%2Fcuda%2FCUDA_Occupancy_calculator.xls&sa=D&sntz=1&usg=AFQjCNGHwVGar_p8KaI5cw1zTDQu3Mek3w
http://www.google.com/url?q=http%3A%2F%2Fdeveloper.download.nvidia.com%2Fcompute%2Fcuda%2FCUDA_Occupancy_calculator.xls&sa=D&sntz=1&usg=AFQjCNGHwVGar_p8KaI5cw1zTDQu3Mek3w

Memory

Memory Types

● Global memory (read and
write)
○ Slow, but has cache

● Texture memory (read
only)
○ Cache optimized for 2D

access pattern
● Constant memory

○ Slow but with cache
● Shared memory (~48kb per

MP)
○ Fast, but kind of special

● Local Memory
○ Slow, but has cache

● CUDA kernels can only operate on device
memory, not host memory
○ So we need to copy over relevant data from the host

to device
● 2 general types: linear memory and CUDA

arrays
○ We will focus on linear memory for now
○ Linear memory works like normal C memory that

you're used to

Device / Global Memory

Linear Memory

● Use cudaMalloc and cudaFree to allocate
and free linear device memory

● Use cudaMemcpy to move data between
host and device memory

● Device memory is in a 32 bit address space
for compute level 1.x cards and 40 bit space
for 2.x cards (we are 2.1)
○ Thus you can refer to memory via pointers as you

usually would

Global Memory

● You can also allocate 2D and 3D memory
using cudaMallocPitch and cudaMalloc3D
○ You will want to use these if you can because they

are properly optimized and padded for performance
○ It might make sense to also use 2D and 3D thread

blocks to operate on such a memory arrangement
● You can also malloc and free inside your

kernels, and such allocations will persist
across different kernels

CUDA Atomics

● Note that thread blocks are not independent,
and their scheduling order is not guaranteed
○ Clearly, threads can access and write to any location

in global memory
● CUDA provides atomic functions to safely

update the same data across multiple
threads
○ ie. atomicAdd, atomicMin, ...

Constant Memory

● Constant memory has some optimizations

○ Use the __constant__ keyword, optionally with
__device__

○ However, with computer 2.0 and later, if you malloc
as usual and pass data to your kernel as a const
pointer, it will do the same thing

● Local memory is local to threads like
registers, but it's actually as slow as global
memory

Shared Memory

● So far, we have only talked about global
memory, accessible across all threads
○ This is fine, but it is the slowest memory available on

the GPU
● For speed, you'll want to make use of shared

memory
○ Shared memory is private to a single thread block,

but can be accessed by all threads in the block
○ Many times faster than global memory
○ The amount of shared memory must be

determinable at kernel launch time
○ Shared memory has a lifetime of the kernel block

Shared Memory

● Since shared memory is private per thread
block it's useful for communicating data
between threads in a block

● To synchronize threads across a block, use
__syncthreads();
○ Note that this does not synchronize all threads

globally, but only threads within that block
○ Useful for reading / writing shared memory

__syncthreads()

● Useful, but be careful when using
__syncthreads()!

● The specification states that no thread will
advance to the next instruction until every
thread in the block reaches __syncthreads()

● Recall that in the case of a branch, the GPU
feeds threads through one condition while
the others wait - then the remaining threads
complete the other branch
○ What happens if the __syncthreads() lies in a

divergent branch?

Divergent Branch with Sync
__global__ void vec_dot(float *a, float () {
 __shared__ float cache[threadsPerBlock];

 int cacheIndex = threadIdx.x;
 cache[cacheIndex] = a[threadIdx.x + blockIdx.x * blockDim.x];
 int i = blockDim.x / 2;
 while(i != 0) {
 if (cacheIndex < i) {
 cache[cacheIndex] += cache[cacheIndex + i];
 __syncthreads();
 }
 i /=2 ;
 }
}

● The above code will cause the GPU to stall indefinitely
● Normally, divergent branches result in some idling threads, but in the case

of __syncthreads(), the results are somewhat tragic
○ Since all threads within a block must reach __syncthreads() before

continuing, the GPU ends up waiting forever

CUDA memory arrangement

Shared Memory Example

● Matrix multiplication oh boy
● Split it up into smaller matrices, and assign a

block to each section
○ For each block, copy the parts of the multiplicands

that you are interested in into shared memory, then
use that for your computations

● Will probably have to draw this out...

Matrix multiplication

for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) {

 // Get sub-matrix Asub of A

 Matrix Asub = GetSubMatrix(A, blockRow, m);

 // Get sub-matrix Bsub of B

 Matrix Bsub = GetSubMatrix(B, m, blockCol);

 // Shared memory used to store Asub and Bsub
respectively

 __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

 __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

 // Load Asub and Bsub from device memory to
shared memory

 // Each thread loads one element of each sub-
matrix

 As[row][col] = GetElement(Asub, row, col);

 Bs[row][col] = GetElement(Bsub, row, col);

 // Synchronize to make sure the sub-matrices
are loaded

 // before starting the computation

 __syncthreads();

Matrix Multiply Example
// Multiply Asub and Bsub together

for (int e = 0; e < BLOCK_SIZE; ++e)

 Cvalue += As[row][e] * Bs[e][col];

 // Synchronize to make sure that the
preceding

// computation is done before loading two
new

// sub-matrices of A and B in the next
iteration

 __syncthreads();

}

SetElement(Csub, row, col, Cvalue);

● You can add a parameter to the kernel
launch <<<gridDim, blockDim,
sharedBytes>>>
○ Allocates a certain number of shared bytes that you

can access with something like
extern __shared__ float data[]

○ You can only do it once, so if you want multiple
shared items dynamically allocated, you have to do
extern __shared__ float data[]
float *d1 = data;
int *d2 = &data[32]; // if you want d1 to be 32 bytes
double *d3 = &data[64]; // if d2 is 32 bytes

○ Watch out for memory alignment!

Allocating Shared Memory

Compile time shared memory

● Alternatively, you can allocate your shared
memory in the kernel
○ __shared__ float data [DATA_SIZE]
○ But data size needs to be known at compile time (I

think)
○ Useful if amount of shared memory required by a

block is same for all blocks, like in the matrix multiply
example

CUDA
Boilerplate &
Utility

CUDA gdb

● CUDA gdb is installed for debugging CUDA
programs
○ (check the toolkit)

● Allows for realtime debugging of a CUDA
application on GPU hardware (should be
very similar to GDB)

● See the user manual for instructions
○ http://developer.download.nvidia.

com/compute/cuda/2_1/cudagdb/CUDA_
GDB_User_Manual.pdf

http://www.google.com/url?q=http%3A%2F%2Fdeveloper.download.nvidia.com%2Fcompute%2Fcuda%2F2_1%2Fcudagdb%2FCUDA_GDB_User_Manual.pdf&sa=D&sntz=1&usg=AFQjCNFZyVLEVcrJ1TH8cKK0R-wl5JdNOw
http://www.google.com/url?q=http%3A%2F%2Fdeveloper.download.nvidia.com%2Fcompute%2Fcuda%2F2_1%2Fcudagdb%2FCUDA_GDB_User_Manual.pdf&sa=D&sntz=1&usg=AFQjCNFZyVLEVcrJ1TH8cKK0R-wl5JdNOw
http://www.google.com/url?q=http%3A%2F%2Fdeveloper.download.nvidia.com%2Fcompute%2Fcuda%2F2_1%2Fcudagdb%2FCUDA_GDB_User_Manual.pdf&sa=D&sntz=1&usg=AFQjCNFZyVLEVcrJ1TH8cKK0R-wl5JdNOw

CUDA Init

● Including cudart.h provides you with simple
device functionality checks

● Good practice to use CUDA_INIT(argc, argv)
at the beginning of your program to check
the device

● Use CUDA_EXIT(argc, argv) when you're
done

Error Checking

● The cutil.h header provides several utility
functions for error checking

● It's good practice to wrap your cudaMalloc /
cudaMemcpy / other calls with cudaSafeCall
([function])
○ Checks if an error occurs when calling that function

Error checking

● In your C/C++ code, you can use
cudaGetLastError and cudaPeekLastError to
get error data after any synchronous CUDA
call
○ For asynchronous calls like kernel launches, call

cudaThreadSynchronize and then check for errors
○ cudaThreadSynchronize blocks until device has

completed all calls including kernel calls, and returns
an error if something fails

● Use cudaGetErrorString to translate error
into something readable

No-copy pinning of Memory

● In all the previous examples, we have used copy
pinning to move memory from host to device

● In CUDA 4, you can map host memory to the
device to avoid a copy with the drawback of
using higher latency memory

float *a = (float *)malloc(sizeof(float) * 64), *d_a;
cudaHostRegister(a, sizeof(float) * 64,
cudaHostRegisterMapped);
cudaHostGetDevicePointer((void **) &d_a, (void *)a, 0);
mykernel<<<32,32>>>(d_a, 64);
cudaHostUnregister(a);
free(a);

Justin's notes
grids, blocks, threads
blocks must be independent but threads do not, they can synchronize and share memory
threads have local memory, blocks have shared memory, grid has global memory
also constant, texture memory
there is a host (CPU) and device (GPU), assumes that threads execute separately on these devices
CUDA code compiles down to PTX assembly (you can also write directly in PTX, but we won't)
nvcc compiler turns ptx into binary code
-arch=sm_10 means compute capability 1.0, we have 2.1 for fermi
you can use __CUDA_ARCH__ macro to change between different code paths depending on your architecture
use __global__ for your kernel, and __device__ for your subroutines
kernels can only operate on device memory aka gpu memory, so you have to allocate it for the kernels, either as linear memory or cuda arrays
cuda arrays are for texture stuff, which we won't use much
linear memory is in a 32 bit space for compute 1.x and 40 bit for computer 2.x, so separately allocated memory can still reference each other
via pointers
use cudamalloc and cudafree to make/destroy linear memory, and cudamemcpy to transfer between host and device memory
you can also use cudamallocpitch or cudamalloc3d for 2d or 3d arrays, recommended for performance because it appropriately pads it
memory allocated with these is considered global, you can create __shared__ memory inside your kernels
there are more memory types like page-locked, portable, write-combined, mapped, but we won't go into these

using SLI requires some additional stuff like transferring between devices but we won't go into it

More notes
use cudagetlasterror or cudapeeklasterror to get errors, for asynchronous calls (like kernel launches) call cudaDeviceSynchronize first
there is direct interoperability with gl and dx where you can map resources directly to cuda so that it can read or modify
you can malloc and free inside your kernels, and allocated memory will persist across different kernels

in general, you want multiple of 32 threads per block, shared memory can play into this, and the number of blocks depends on the size of your
problem (for scheduling)
see the occupancy spreadsheet if you want to optimize more?

