
CS195V Week 10
Introduction to CUDA



Plan

● There's about a month before reading period
● We plan to spend one or two lectures on 

CUDA introductions, then...
○ Anyone want to present?

● Intro CUDA project will go out soon
○ Video filtering
○ Should be pretty simple



CUDA



General Purpose GPU Programming

● With the introduction of the unified device 
architecture (UDA) GPU hardware was 
made generic
○ No longer specific hardware for each shader stage
○ Same hardware is responsible for all shader stages
○ Much more generic purpose hardware

● OpenCL and CUDA are the main GPGPU 
languages today (DirectCompute was 
recently introduced by MS)
○ Very similar languages - people tend to use CUDA 

more even though it is NVIDIA specific (more 
support / slightly better performance)



CUDA

● Compute Unified Device Architecture
● Released by NVIDIA first in 2007

○ Only supported on 8 series cards and later
● Framework for general purpose computation 

on the GPU
● Written mostly like C, so easy to convert 

over
● But lots of little caveats

○ The C programming guide at http://developer.
download.nvidia.
com/compute/DevZone/docs/html/C/doc/CUDA_C_P
rogramming_Guide.pdf tells you pretty much all you 
need to know, but it's long and boring

http://www.google.com/url?q=http%3A%2F%2Fdeveloper.download.nvidia.com%2Fcompute%2FDevZone%2Fdocs%2Fhtml%2FC%2Fdoc%2FCUDA_C_Programming_Guide.pdf&sa=D&sntz=1&usg=AFQjCNG14KYRevDRJdR70PhlaevjRie35g
http://www.google.com/url?q=http%3A%2F%2Fdeveloper.download.nvidia.com%2Fcompute%2FDevZone%2Fdocs%2Fhtml%2FC%2Fdoc%2FCUDA_C_Programming_Guide.pdf&sa=D&sntz=1&usg=AFQjCNG14KYRevDRJdR70PhlaevjRie35g
http://www.google.com/url?q=http%3A%2F%2Fdeveloper.download.nvidia.com%2Fcompute%2FDevZone%2Fdocs%2Fhtml%2FC%2Fdoc%2FCUDA_C_Programming_Guide.pdf&sa=D&sntz=1&usg=AFQjCNG14KYRevDRJdR70PhlaevjRie35g
http://www.google.com/url?q=http%3A%2F%2Fdeveloper.download.nvidia.com%2Fcompute%2FDevZone%2Fdocs%2Fhtml%2FC%2Fdoc%2FCUDA_C_Programming_Guide.pdf&sa=D&sntz=1&usg=AFQjCNG14KYRevDRJdR70PhlaevjRie35g


The Fermi Device Architecture

● The warp 
schedulers 
dispatch warps 
(groups of 32 
threads) to the 
shader cores

● GTX 460 has 336 
shader cores or 
stream processors 
@ 1350 MHz
○  



Getting it to work

● You need the CUDA toolkit from NVIDIA
○ /contrib/projects/cuda-toolkit/ (Toolkit)
○ /contrib/projects/cuda-sdk/ (SDK)

● Your kernel and kernel launching code goes 
in a .cu file (headers can go in .cuh)
○ Compiled separately by nvcc

● Tell your makefile what is CUDA code and 
what is C/C++ code
○ We do it for you, but the NVIDIA code samples have 

example makefiles, don't worry, they're short and 
simple



Some vocabulary that you might see

● Host: The regular computer
● Device: The GPU
● Kernel: A function made to be executed 

many times in parallel on the GPU
○ Origins in stream processor programming, where a 

kernel function is applied to each element in the 
stream (SIMD)

○ Shaders are a specific type of kernel
● nvcc: The NVIDIA compiler for CUDA code
● ptx: GPU assembly language

○ nvcc compiles your kernel to ptx first, and then ptx to 
binary code



CUDA program structure

● Most CUDA programs operate like...
○ Copy some data to Device memory
○ Kernel launch (run kernel function on some data)
○ Wait for kernels to finish
○ Copy data back to Host memory
○ Keep going your merry way

● It's a simple model, but you can do a lot of 
things with it
○ Parallelization is implicit - your kernel function is 

launched thousands of times (for each piece of data)
● Also it means that much of your CUDA code 

will look similar (or copy pasted verbatim)



CUDA Threading Model

● CUDA programs are a hierarchy of concurrent 
threads
○ Threading is subdivided into blocks, each of which are 

then subdivided into threads
○ Choice of subdivision is up to you!
○ Note that (num of blocks) x (threads per block) = total 

number of threads
● Choosing the number of threads per block and 

number of blocks can be tricky
○ Largely depends on your data, but different numbers 

can have different performance (more on this later)
○ Note that the hardware limits number of blocks in a 

launch to 65,535 and the number of threads per block 
depends on the GPU (about 512)





Some more vocabulary

● Thread: A single execution thread, as you 
would expect, runs on a single GPU 
microprocessor

● Thread Block: A group of threads that will be 
issued the same instructions at the same 
time, they can also share some memory
○ Note that the order of block execution is random

● Grid: A group of all of the thread blocks that 
you are running

● Usually you know how many total threads 
you want to launch, so the question is, how 
do you partition them into blocks?



A Simple Kernel
#include <cuda.h>

__global__ void kernelfunction(float *a, int N)

{

  int idx = blockIdx.x*blockDim.x + threadIdx.x;

  if (idx<N) {

a[idx] = a[idx] + 1;

  }

}

● Given an array of floats and the array length, this kernel adds one to each value
● blockIdx, blockDim, and threadIdx are built in variables 

○ blockIdx.x/y/z is the current block index
○ blockDim.x/y/z is the block dimension (size of block)
○ threadIdx.x/y/z is the current thread in the block

● So each thread in each block doubles a value in a
● We need to check if idx < N to prevent writing past the array 

○ If we start the kernel with more total threads than array elements (ie. the number elements may 
not be evenly divisible into blocks / threads per block)



A Simple Kernel

● __global__ keyword defines a function as 
being a kernel run on the device that can be 
launched from the host
○ __device__ can be used for subroutines launched 

from the device run on the device (gets compiled by 
nvcc and gcc)

● Note that recursion is supported only on 
newer devices (compute capability 2+)
○ But you should avoid using it (may see up to 30% 

performance hit)
● Now to run the kernel...



Launching the Kernel
int c_kernel_launch(float *a_h, int N)
{
  float *a_d;             // pointer to device memory
  int i;
  size_t size = N*sizeof(float);
  // allocate array on device
  cudaMalloc((void **) &a_d, size);
  // copy data from host to device
  cudaMemcpy(a_d, a_h, sizeof(float)*N, cudaMemcpyHostToDevice);
  // do calculation on device:
  // Compute execution configuration
  int blockSize = 4;
  int nBlocks = N/blockSize + (N%blockSize == 0?0:1);
  
  // kernel launch
  kernelfunction <<< nBlocks, blockSize >>> (a_d, N);
  
  // Retrieve result from device
  cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
  // cleanup
  cudaFree(a_d); 
}
 

 



><><><><><><><><><><><><><><><

● The cudaMalloc/Memcpy/Free work like 
you'd expect, except they work on device 
memory, more on this later

● You see the C-style function launch with 
arguments as usual, but sandwiched in 
between are angle brackets?!

● These determine the structure of your 
threads

● This structure can be important from a 
performance perspective

● Also some more arguments (optional)
○ Shared memory allocations, more on this later
○ Stream organization, probably not more on this later



More on Grid and Block Dimensions

● Grids and Blocks can be 1D, 2D, or 3D
○ You may want different dimensions depending on 

the format of your data
○ In this case we've used a 1D grid

● Specify the dimensions of your grid and 
blocks using int or dim3

● The kernel call is then kernel<<<gridDim,
BlockDim>>>(args)

● You can access the block index within the 
grid with blockIdx, the block dimensions with 
blockDim, and the thread index in the block 
with threadIdx



Example 2D and 3D grids



__global__ void invert(float *image) {
   int x = threadIdx.x + blockIdx.x * blockDim.x;
   int y = threadIdx.y + blockIdx.y * blockDim.y;
   int idx = y * blockDim.x * gridDim.x + x;
   image[idx] = 1.0 - image[idx];
}
 
void launch_kernel(float *image)
{
   // ... move host memory to device ... //
   int threadsPerBlock = 16;
   dim3 blocks(512 / threadsPerBlock, 512 / threadsPerBlock);
   dim3 threads(threadsPerBlock, threadsPerBlock);
   invert<<<blocks, threads>>>(d_image);
  
}
 

 

A Sample 2D Kernel



Occupancy

● So how many threads/blocks do you want?
● Number of threads per block should be a 

multiple of 32 because of the architecture
○ How many depends on how much sharing needs to 

happen between threads in a block
● Total number of blocks depends on size of 

block and the size of your data
● You can use cudaGetDeviceCount() and 

cudaGetDeviceProperties() to learn more 
about the specifics of your system
○ If you really want to optimize, check out the 

occupancy calculator at http://developer.download.nvidia.
com/compute/cuda/CUDA_Occupancy_calculator.xls

http://www.google.com/url?q=http%3A%2F%2Fdeveloper.download.nvidia.com%2Fcompute%2Fcuda%2FCUDA_Occupancy_calculator.xls&sa=D&sntz=1&usg=AFQjCNGHwVGar_p8KaI5cw1zTDQu3Mek3w
http://www.google.com/url?q=http%3A%2F%2Fdeveloper.download.nvidia.com%2Fcompute%2Fcuda%2FCUDA_Occupancy_calculator.xls&sa=D&sntz=1&usg=AFQjCNGHwVGar_p8KaI5cw1zTDQu3Mek3w


Memory



Memory Types

● Global memory (read and 
write)
○ Slow, but has cache

● Texture memory (read 
only)
○ Cache optimized for 2D 

access pattern
● Constant memory

○ Slow but with cache
● Shared memory (~48kb per 

MP)
○ Fast, but kind of special

● Local Memory
○ Slow, but has cache



● CUDA kernels can only operate on device 
memory, not host memory
○ So we need to copy over relevant data from the host 

to device
● 2 general types: linear memory and CUDA 

arrays
○ We will focus on linear memory for now
○ Linear memory works like normal C memory that 

you're used to

Device / Global Memory



Linear Memory

● Use cudaMalloc and cudaFree to allocate 
and free linear device memory

● Use cudaMemcpy to move data between 
host and device memory

● Device memory is in a 32 bit address space 
for compute level 1.x cards and 40 bit space 
for 2.x cards (we are 2.1)
○ Thus you can refer to memory via pointers as you 

usually would



Global Memory

● You can also allocate 2D and 3D memory 
using cudaMallocPitch and cudaMalloc3D
○ You will want to use these if you can because they 

are properly optimized and padded for performance
○ It might make sense to also use 2D and 3D thread 

blocks to operate on such a memory arrangement
● You can also malloc and free inside your 

kernels, and such allocations will persist 
across different kernels

 



CUDA Atomics

● Note that thread blocks are not independent, 
and their scheduling order is not guaranteed
○ Clearly, threads can access and write to any location 

in global memory
● CUDA provides atomic functions to safely 

update the same data across multiple 
threads
○ ie. atomicAdd, atomicMin, ...



Constant Memory

 
● Constant memory has some optimizations

○ Use the __constant__ keyword, optionally with 
__device__

○ However, with computer 2.0 and later, if you malloc 
as usual and pass data to your kernel as a const 
pointer, it will do the same thing

● Local memory is local to threads like 
registers, but it's actually as slow as global 
memory



Shared Memory

● So far, we have only talked about global 
memory, accessible across all threads
○ This is fine, but it is the slowest memory available on 

the GPU
● For speed, you'll want to make use of shared 

memory
○ Shared memory is private to a single thread block, 

but can be accessed by all threads in the block
○ Many times faster than global memory
○ The amount of shared memory must be 

determinable at kernel launch time
○ Shared memory has a lifetime of the kernel block



Shared Memory

● Since shared memory is private per thread 
block it's useful for communicating data 
between threads in a block

● To synchronize threads across a block, use 
__syncthreads();
○ Note that this does not synchronize all threads 

globally, but only threads within that block
○ Useful for reading / writing shared memory



__syncthreads()

● Useful, but be careful when using 
__syncthreads()!

● The specification states that no thread will 
advance to the next instruction until every 
thread in the block reaches __syncthreads()

● Recall that in the case of a branch, the GPU 
feeds threads through one condition while 
the others wait - then the remaining threads 
complete the other branch
○ What happens if the __syncthreads() lies in a 

divergent branch?
 
 



Divergent Branch with Sync
__global__ void vec_dot(float *a, float () {
   __shared__ float cache[threadsPerBlock];
  
   int cacheIndex = threadIdx.x;
   cache[cacheIndex] = a[threadIdx.x + blockIdx.x * blockDim.x];
   int i = blockDim.x / 2;
   while(i != 0) {
       if (cacheIndex < i) {
           cache[cacheIndex] += cache[cacheIndex + i];
           __syncthreads();
       }
       i /=2 ;
   }
}

 
● The above code will cause the GPU to stall indefinitely
● Normally, divergent branches result in some idling threads, but in the case 

of __syncthreads(), the results are somewhat tragic
○ Since all threads within a block must reach __syncthreads() before 

continuing, the GPU ends up waiting forever



CUDA memory arrangement



Shared Memory Example

● Matrix multiplication oh boy
● Split it up into smaller matrices, and assign a 

block to each section
○ For each block, copy the parts of the multiplicands 

that you are interested in into shared memory, then 
use that for your computations

● Will probably have to draw this out...



Matrix multiplication



for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) {

    // Get sub-matrix Asub of A

    Matrix Asub = GetSubMatrix(A, blockRow, m);

    // Get sub-matrix Bsub of B

    Matrix Bsub = GetSubMatrix(B, m, blockCol);

    // Shared memory used to store Asub and Bsub 
respectively

    __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

    __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

    // Load Asub and Bsub from device memory to 
shared memory

    // Each thread loads one element of each sub-
matrix

    As[row][col] = GetElement(Asub, row, col);

    Bs[row][col] = GetElement(Bsub, row, col);

    // Synchronize to make sure the sub-matrices 
are loaded

    // before starting the computation

    __syncthreads();

        

Matrix Multiply Example
// Multiply Asub and Bsub together

for (int e = 0; e < BLOCK_SIZE; ++e)

     Cvalue += As[row][e] * Bs[e][col];

 // Synchronize to make sure that the 
preceding

// computation is done before loading two 
new

// sub-matrices of A and B in the next 
iteration

        __syncthreads();

}

SetElement(Csub, row, col, Cvalue);



● You can add a parameter to the kernel 
launch <<<gridDim, blockDim, 
sharedBytes>>>
○ Allocates a certain number of shared bytes that you 

can access with something like 
extern __shared__ float data[]

○ You can only do it once, so if you want multiple 
shared items dynamically allocated, you have to do
extern __shared__ float data[]
float *d1 = data;
int *d2 = &data[32]; // if you want d1 to be 32 bytes
double *d3 = &data[64]; // if d2 is 32 bytes

○ Watch out for memory alignment!

Allocating Shared Memory



Compile time shared memory

● Alternatively, you can allocate your shared 
memory in the kernel
○ __shared__ float data [DATA_SIZE]
○ But data size needs to be known at compile time (I 

think)
○ Useful if amount of shared memory required by a 

block is same for all blocks, like in the matrix multiply 
example



CUDA 
Boilerplate & 
Utility



CUDA gdb

● CUDA gdb is installed for debugging CUDA 
programs
○ (check the toolkit)

● Allows for realtime debugging of a CUDA 
application on GPU hardware (should be 
very similar to GDB)

● See the user manual for instructions
○ http://developer.download.nvidia.

com/compute/cuda/2_1/cudagdb/CUDA_
GDB_User_Manual.pdf

http://www.google.com/url?q=http%3A%2F%2Fdeveloper.download.nvidia.com%2Fcompute%2Fcuda%2F2_1%2Fcudagdb%2FCUDA_GDB_User_Manual.pdf&sa=D&sntz=1&usg=AFQjCNFZyVLEVcrJ1TH8cKK0R-wl5JdNOw
http://www.google.com/url?q=http%3A%2F%2Fdeveloper.download.nvidia.com%2Fcompute%2Fcuda%2F2_1%2Fcudagdb%2FCUDA_GDB_User_Manual.pdf&sa=D&sntz=1&usg=AFQjCNFZyVLEVcrJ1TH8cKK0R-wl5JdNOw
http://www.google.com/url?q=http%3A%2F%2Fdeveloper.download.nvidia.com%2Fcompute%2Fcuda%2F2_1%2Fcudagdb%2FCUDA_GDB_User_Manual.pdf&sa=D&sntz=1&usg=AFQjCNFZyVLEVcrJ1TH8cKK0R-wl5JdNOw


CUDA Init

● Including cudart.h provides you with simple 
device functionality checks

● Good practice to use CUDA_INIT(argc, argv) 
at the beginning of your program to check 
the device

● Use CUDA_EXIT(argc, argv) when you're 
done



Error Checking

● The cutil.h header provides several utility 
functions for error checking

● It's good practice to wrap your cudaMalloc / 
cudaMemcpy / other calls with cudaSafeCall
([function])
○ Checks if an error occurs when calling that function



Error checking

● In your C/C++ code, you can use 
cudaGetLastError and cudaPeekLastError to 
get error data after any synchronous CUDA 
call
○ For asynchronous calls like kernel launches, call 

cudaThreadSynchronize and then check for errors
○ cudaThreadSynchronize blocks until device has 

completed all calls including kernel calls, and returns 
an error if something fails

● Use cudaGetErrorString to translate error 
into something readable



No-copy pinning of Memory

● In all the previous examples, we have used copy 
pinning to move memory from host to device

● In CUDA 4, you can map host memory to the 
device to avoid a copy with the drawback of 
using higher latency memory

 
float *a = (float *)malloc(sizeof(float) * 64), *d_a;
cudaHostRegister(a, sizeof(float) * 64, 
cudaHostRegisterMapped);
cudaHostGetDevicePointer((void **) &d_a, (void *)a, 0);
mykernel<<<32,32>>>(d_a,  64);
cudaHostUnregister(a);
free(a);
 

 



Justin's notes
grids, blocks, threads
blocks must be independent but threads do not, they can synchronize and share memory
threads have local memory, blocks have shared memory, grid has global memory
also constant, texture memory
there is a host (CPU) and device (GPU), assumes that threads execute separately on these devices
CUDA code compiles down to PTX assembly (you can also write directly in PTX, but we won't)
nvcc compiler turns ptx into binary code
-arch=sm_10 means compute capability 1.0, we have 2.1 for fermi
you can use __CUDA_ARCH__ macro to change between different code paths depending on your architecture
use __global__ for your kernel, and __device__ for your subroutines
kernels can only operate on device memory aka gpu memory, so you have to allocate it for the kernels, either as linear memory or cuda arrays
cuda arrays are for texture stuff, which we won't use much
linear memory is in a 32 bit space for compute 1.x and 40 bit for computer 2.x, so separately allocated memory can still reference each other 
via pointers
use cudamalloc and cudafree to make/destroy linear memory, and cudamemcpy to transfer between host and device memory
you can also use cudamallocpitch or cudamalloc3d for 2d or 3d arrays, recommended for performance because it appropriately pads it
memory allocated with these is considered global, you can create __shared__ memory inside your kernels
there are more memory types like page-locked, portable, write-combined, mapped, but we won't go into these
 
using SLI requires some additional stuff like transferring between devices but we won't go into it



More notes
use cudagetlasterror or cudapeeklasterror to get errors, for asynchronous calls (like kernel launches) call cudaDeviceSynchronize first
there is direct interoperability with gl and dx where you can map resources directly to cuda so that it can read or modify
you can malloc and free inside your kernels, and allocated memory will persist across different kernels
 
in general, you want multiple of 32 threads per block, shared memory can play into this, and the number of blocks depends on the size of your 
problem ( for scheduling )
see the occupancy spreadsheet if you want to optimize more?
 


