
CS195V Week 11
CUDA Part 2



Shared Memory and Thread 
Communication

● Recall shared memory from last 
lecture
○ Fast, equivalent to L1 cache (~64kb)
○ Shared between threads in a block

● Best way to communicate 
between threads
○ You can synchronize across threads 

in a block to ensure r/w is complete
Global memory requires you to 
use multiple kernel invocations 
(since you don't know when a r/w 
op is done)



Reductions

● A commonly used operation is the reduction 
operation, where some function (ie. sum) is 
used to sum up the values of an array

● The bad but easy way:
    extern __shared__ float cache[];
   cache[i] = threadIdx.x;
   __syncthreads(); //ensure all threads done writing to 
cache
   if(thread.Idx == 0){
       for(int i=0; i<N; i++){
           cache[0] += cache[i];
       }
       printf("%f\n", cache[0]);
   }
 



Reductions

● The better way:
   extern __shared__ float cache[];
   cache[i] = threadIdx.x;
   __syncthreads();   
 
   for(int i = blockDim.x; i>0; i >>= 1) {

int halfPoint = (i >> 1);
       if(threadIdx.x < halfPoint)
           cache[threadIdx.x]+=cache[threadIdx. x + 
halfPoint];
       __syncthreads();
   }
  
   printf("%f\n", cache[0]);
 



CUDA Random Number Generation 
(RNG)

● Historically it has been very difficult to create 
random numbers on the GPU
○ Had to sample from random textures / implement 

your own PRNG (ie. LCG, Mersenne, etc.)
○ Implementing a parallel PRNG isn't trivial (one option 

is to give each PRNG thread a different seed, but 
you loose some randomness guarantees)!

○ And you wonder why GLSL noise() doesn't work...
● Compute 2.0 added built in functionality for 

RNG
Random headers can be found in <curand.h> 
and <curand_kernel.h>



CUDA Random Number Generation 
(RNG)

● We will give a randState to each CUDA 
thread, from which it can sample from

● On the host, create a device pointer to hold 
the randomStates

● Malloc number of states equal to number of 
threads

● Pass the device pointer to your function
● Init the random states
● Call a random function (ie. curand_uniform) 

with the state given to that thread
● Free the randomStates



CUDA Random Number Generation 
(RNG)
__global__ void init_stuff(curandState *state) {
   int idx = blockIdx.x * blockDim.x + threadIdx.x;
   curand_init(1337, idx, 0, &state[idx]);
}
__global__ void make_rand(curandState *state, float 
*randArray)  {
   int idx = blockIdx.x * blockDim.x + threadIdx.x;
   randArray[idx] = curand_uniform(&state[idx]);
}
void host_function() {
   curandState *d_state;
   cudaMalloc(&d_state, nThreads * nBlocks);
   init_stuff<<<nblocks, nthreads>>>(d_state);
   make_rand<<<nblocks, nthreads>>>(d_state, randArray);
   cudaFree(d_state);
}



CUDA Random Number Generation 
(RNG)

● The total state space of the PRNG before 
you start to see repeats is about 2^190

● CUDA's RNG is designed such that given 
the same seed in each thread, it will 
generate random numbers spaced 2^67 
numbers away in the PRNG's sequence
○ When calling curand_init with a seed, it scrambles 

that seed and then skips ahead 2^67 numbers (this 
is kind of expensive but has some nice properties)

○ This even spacing between threads guarantees that 
you can analyze the randomness of the PRNG and 
those results will hold no matter what seed you use



CUDA Random Number Generation 
(RNG)

● What if you're running millions of threads 
and each thread needs RNs?
○ Not completely uncommon
○ You could run out of state space per thread and start 

seeing repeats... ((2^190) / (10^6)) / (2^67) = 1.0633824 × 10^31

● Can seed each thread with a different seed 
(ex. theadIdx.x), and then set the state to 
zero (ie. don't advance each thread by 2^67)
○ This may introduce some bias / correlation, but not 

many other options
○ Don't have the same assurance of statistical 

properties remaining the same as seed changes
○ It's also faster (by a factor of 10x or so)



CUDA Random Number Generation 
(RNG)

● Why do we lose some statistical guarantees 
of randomness?

● Suppose we choose seeds equal to the 
threadIdx.x (ie. 0,1,2...)

● Now suppose the seed scrambler 
(essentially a hash function) has a collision 
between threads 0 and 4
○ This means threads 0 and 4 will be generating the 

same sequence of numbers
● There could also be bias introduced by the 

choice of hash function itself...



CUDA Random Number Generation 
(RNG)

● The take home message:
○ Depending on your problem you may need to be 

careful when using CUDA's RNG (ie. crypto)
○ If you're making pretty pictures (ie. graphics) it 

probably doesn't matter



CUDA Libraries

● CUDA has a lot of libraries that you can use 
to make things much easier

○ Lots of unofficial libraries, but we'll cover some of the 
main included libraries here

● Not used by our projects, but if you pursue 
CUDA in the future, you will most certainly 
make use of these

 



CUFFT

● Based on the successful FFTW library for 
C++

● Adds FFT (Fast Fourier Transform) 
functionality to CUDA, as you might expect

● 1D, 2D, 3D, complex and real data
● 1D transform size of up to 128 million 

elements
● Order of magnitude speedup from multi-core 

CPU implementations
 



CUFFT Example (3D)
#include <cufft.h>
#define NX 64
#define NY 64
#define NZ 128
cufftHandle plan;
cufftComplex *data1, *data2;
cudaMalloc((void**)&data1, sizeof(cufftComplex)*NX*NY*NZ);
cudaMalloc((void**)&data2, sizeof(cufftComplex)*NX*NY*NZ);
/* Create a 3D FFT plan. */
cufftPlan3d(&plan, NX, NY, NZ, CUFFT_C2C);
/* Transform the first signal in place. */
cufftExecC2C(plan, data1, data1, CUFFT_FORWARD);
/* Transform the second signal using the same plan. */
cufftExecC2C(plan, data2, data2, CUFFT_FORWARD);
/* Destroy the cuFFT plan. */
cufftDestroy(plan);
cudaFree(data1); cudaFree(data2);
 
// note that the cufft code takes the place of your cuda kernel



CUBLAS

● CUDA Basic Linear Algebra Subroutines
● Lets you do linear algebra-y things easily

○ 152 standard BLAS (Basic Linear Algebra 
Subprogram) operations

● Easy way to do matrix multiplication, etc.
● Execution is very similar to CUFFT

○ You get a handle and call built in functions on it with 
your data

○ Kernel launches replaced by library functions

 



Other CUDA Libraries

● CURAND
○ Generate large batches of random numbers

● CUDA math library
○ normal math functionality, exactly like C/C++ (same 

#include <math.h>)
● CUSPARSE

○ Sparse matrix manipulation
● NVIDIA Performance Primitives (NPP)

○ Image, signal processing primitives
● Thrust

○ Parallel algorithms and data structures

 



Ant Colony Optimization

http://www.csse.monash.edu.
au/~berndm/CSE460/Lectures/cse460-9.pdf

http://www.csse.monash.edu.au/~berndm/CSE460/Lectures/cse460-9.pdf
http://www.csse.monash.edu.au/~berndm/CSE460/Lectures/cse460-9.pdf


Parallelizing ACO on the GPU

● We can have thousands or even millions of 
ants
○ Easy way of splitting up the work is to give each 

worker ant a thread
● Recall that each ant must be able to add its 

tour to the pheromone graph before 
proceeding to the next time step
○ Need to synchronize across ants (ie. after each ant 

has constructed their tour, they must add 
pheromone to the graph before we can compute the 
next time step's traversal probabilities) 



Parallelizing ACO on the GPU

● We don't have any easy way to synchronize 
across all threads in the GPU

● In fact the only way is to call multiple kernel 
invocations with a cudaThreadSynchronize()
for(int i=0; i<numIterations; i++) {
     tsp<<<1, numAnts>>>();
     cudaThreadSynchronize();
}

○ This is expensive (we're not reaching full occupancy)
● Recall that we do have built in functionality 

to synchronize threads in a block without 
exiting the kernel...



Multi Colony Optimization on the 
GPU

● An easy way of parallelizing ACO is to 
create multiple colonies of ants
○ Each colony of ants stores their own pheromone 

graph and creates multiple iterations of tours
○ Every so often, communicate between the different 

colonies (ie. pass best paths / share pheromone 
information)

● Intuitive subdivision!
○ Number of blocks = Number of colonies
○ Number of ants per block = Number of threads per 

block
○ Total number of threads = Number of ants x Number 

of colonies



Multi Colony Optimization on the 
GPU

● Now when all ants have created their tours, 
we can sum up their total contribution for 
each edge across all threads in a block by 
using __syncthreads() and a reduction 

● Similarly, we can update the pheromone 
evaporation by just having each thread in a 
block update some set of edges, and then 
__syncthreads() again before the next tour 
construction step


