
CS195V Week 11
CUDA Part 2

Shared Memory and Thread
Communication

● Recall shared memory from last
lecture
○ Fast, equivalent to L1 cache (~64kb)
○ Shared between threads in a block

● Best way to communicate
between threads
○ You can synchronize across threads

in a block to ensure r/w is complete
Global memory requires you to
use multiple kernel invocations
(since you don't know when a r/w
op is done)

Reductions

● A commonly used operation is the reduction
operation, where some function (ie. sum) is
used to sum up the values of an array

● The bad but easy way:
 extern __shared__ float cache[];
 cache[i] = threadIdx.x;
 __syncthreads(); //ensure all threads done writing to
cache
 if(thread.Idx == 0){
 for(int i=0; i<N; i++){
 cache[0] += cache[i];
 }
 printf("%f\n", cache[0]);
 }

Reductions

● The better way:
 extern __shared__ float cache[];
 cache[i] = threadIdx.x;
 __syncthreads();

 for(int i = blockDim.x; i>0; i >>= 1) {

int halfPoint = (i >> 1);
 if(threadIdx.x < halfPoint)
 cache[threadIdx.x]+=cache[threadIdx. x +
halfPoint];
 __syncthreads();
 }

 printf("%f\n", cache[0]);

CUDA Random Number Generation
(RNG)

● Historically it has been very difficult to create
random numbers on the GPU
○ Had to sample from random textures / implement

your own PRNG (ie. LCG, Mersenne, etc.)
○ Implementing a parallel PRNG isn't trivial (one option

is to give each PRNG thread a different seed, but
you loose some randomness guarantees)!

○ And you wonder why GLSL noise() doesn't work...
● Compute 2.0 added built in functionality for

RNG
Random headers can be found in <curand.h>
and <curand_kernel.h>

CUDA Random Number Generation
(RNG)

● We will give a randState to each CUDA
thread, from which it can sample from

● On the host, create a device pointer to hold
the randomStates

● Malloc number of states equal to number of
threads

● Pass the device pointer to your function
● Init the random states
● Call a random function (ie. curand_uniform)

with the state given to that thread
● Free the randomStates

CUDA Random Number Generation
(RNG)
__global__ void init_stuff(curandState *state) {
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 curand_init(1337, idx, 0, &state[idx]);
}
__global__ void make_rand(curandState *state, float
*randArray) {
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 randArray[idx] = curand_uniform(&state[idx]);
}
void host_function() {
 curandState *d_state;
 cudaMalloc(&d_state, nThreads * nBlocks);
 init_stuff<<<nblocks, nthreads>>>(d_state);
 make_rand<<<nblocks, nthreads>>>(d_state, randArray);
 cudaFree(d_state);
}

CUDA Random Number Generation
(RNG)

● The total state space of the PRNG before
you start to see repeats is about 2^190

● CUDA's RNG is designed such that given
the same seed in each thread, it will
generate random numbers spaced 2^67
numbers away in the PRNG's sequence
○ When calling curand_init with a seed, it scrambles

that seed and then skips ahead 2^67 numbers (this
is kind of expensive but has some nice properties)

○ This even spacing between threads guarantees that
you can analyze the randomness of the PRNG and
those results will hold no matter what seed you use

CUDA Random Number Generation
(RNG)

● What if you're running millions of threads
and each thread needs RNs?
○ Not completely uncommon
○ You could run out of state space per thread and start

seeing repeats... ((2^190) / (10^6)) / (2^67) = 1.0633824 × 10^31

● Can seed each thread with a different seed
(ex. theadIdx.x), and then set the state to
zero (ie. don't advance each thread by 2^67)
○ This may introduce some bias / correlation, but not

many other options
○ Don't have the same assurance of statistical

properties remaining the same as seed changes
○ It's also faster (by a factor of 10x or so)

CUDA Random Number Generation
(RNG)

● Why do we lose some statistical guarantees
of randomness?

● Suppose we choose seeds equal to the
threadIdx.x (ie. 0,1,2...)

● Now suppose the seed scrambler
(essentially a hash function) has a collision
between threads 0 and 4
○ This means threads 0 and 4 will be generating the

same sequence of numbers
● There could also be bias introduced by the

choice of hash function itself...

CUDA Random Number Generation
(RNG)

● The take home message:
○ Depending on your problem you may need to be

careful when using CUDA's RNG (ie. crypto)
○ If you're making pretty pictures (ie. graphics) it

probably doesn't matter

CUDA Libraries

● CUDA has a lot of libraries that you can use
to make things much easier

○ Lots of unofficial libraries, but we'll cover some of the
main included libraries here

● Not used by our projects, but if you pursue
CUDA in the future, you will most certainly
make use of these

CUFFT

● Based on the successful FFTW library for
C++

● Adds FFT (Fast Fourier Transform)
functionality to CUDA, as you might expect

● 1D, 2D, 3D, complex and real data
● 1D transform size of up to 128 million

elements
● Order of magnitude speedup from multi-core

CPU implementations

CUFFT Example (3D)
#include <cufft.h>
#define NX 64
#define NY 64
#define NZ 128
cufftHandle plan;
cufftComplex *data1, *data2;
cudaMalloc((void**)&data1, sizeof(cufftComplex)*NX*NY*NZ);
cudaMalloc((void**)&data2, sizeof(cufftComplex)*NX*NY*NZ);
/* Create a 3D FFT plan. */
cufftPlan3d(&plan, NX, NY, NZ, CUFFT_C2C);
/* Transform the first signal in place. */
cufftExecC2C(plan, data1, data1, CUFFT_FORWARD);
/* Transform the second signal using the same plan. */
cufftExecC2C(plan, data2, data2, CUFFT_FORWARD);
/* Destroy the cuFFT plan. */
cufftDestroy(plan);
cudaFree(data1); cudaFree(data2);

// note that the cufft code takes the place of your cuda kernel

CUBLAS

● CUDA Basic Linear Algebra Subroutines
● Lets you do linear algebra-y things easily

○ 152 standard BLAS (Basic Linear Algebra
Subprogram) operations

● Easy way to do matrix multiplication, etc.
● Execution is very similar to CUFFT

○ You get a handle and call built in functions on it with
your data

○ Kernel launches replaced by library functions

Other CUDA Libraries

● CURAND
○ Generate large batches of random numbers

● CUDA math library
○ normal math functionality, exactly like C/C++ (same

#include <math.h>)
● CUSPARSE

○ Sparse matrix manipulation
● NVIDIA Performance Primitives (NPP)

○ Image, signal processing primitives
● Thrust

○ Parallel algorithms and data structures

Ant Colony Optimization

http://www.csse.monash.edu.
au/~berndm/CSE460/Lectures/cse460-9.pdf

http://www.csse.monash.edu.au/~berndm/CSE460/Lectures/cse460-9.pdf
http://www.csse.monash.edu.au/~berndm/CSE460/Lectures/cse460-9.pdf

Parallelizing ACO on the GPU

● We can have thousands or even millions of
ants
○ Easy way of splitting up the work is to give each

worker ant a thread
● Recall that each ant must be able to add its

tour to the pheromone graph before
proceeding to the next time step
○ Need to synchronize across ants (ie. after each ant

has constructed their tour, they must add
pheromone to the graph before we can compute the
next time step's traversal probabilities)

Parallelizing ACO on the GPU

● We don't have any easy way to synchronize
across all threads in the GPU

● In fact the only way is to call multiple kernel
invocations with a cudaThreadSynchronize()
for(int i=0; i<numIterations; i++) {
 tsp<<<1, numAnts>>>();
 cudaThreadSynchronize();
}

○ This is expensive (we're not reaching full occupancy)
● Recall that we do have built in functionality

to synchronize threads in a block without
exiting the kernel...

Multi Colony Optimization on the
GPU

● An easy way of parallelizing ACO is to
create multiple colonies of ants
○ Each colony of ants stores their own pheromone

graph and creates multiple iterations of tours
○ Every so often, communicate between the different

colonies (ie. pass best paths / share pheromone
information)

● Intuitive subdivision!
○ Number of blocks = Number of colonies
○ Number of ants per block = Number of threads per

block
○ Total number of threads = Number of ants x Number

of colonies

Multi Colony Optimization on the
GPU

● Now when all ants have created their tours,
we can sum up their total contribution for
each edge across all threads in a block by
using __syncthreads() and a reduction

● Similarly, we can update the pheromone
evaporation by just having each thread in a
block update some set of edges, and then
__syncthreads() again before the next tour
construction step

