
CS195V Week 6

Image Samplers and Atomic 
Operations



Administrata

● Warp is due today!
● NBody should go out soon

○ Due in three weeks instead of two
○ Slightly larger in scope
○ First week and a half we be spent on implementing a 

cs32 Solar-like sim
○ Second week and a half will extend that to fluid 

simulation
● We need more case studies!



Texture Buffer Objects (TBOs)

● Probably won't use them (at least not yet), 
but worth knowing what they are

● Introduced in OpenGL3.x
● 1 dimensional storage as a texture
● Cannot do any filtering and must be 

accessed using texelFetch (ie. coordinates 
must be integer index, not [0, 1])

● Useful if you want to pass large uniform 
arrays to a shader



OpenGL 4.2

(╯°□°）╯︵ ┻━┻)

With OpenGL 4.2 you can now do this:



OpenGL 4.2

● OpenGL 4.2 official at least year's 
SIGGRAPH

● Up until now we focused on OpenGL 4.0 
specific features

● Keep in mind that the drivers for the GPUs in 
the CS department only have 4.1 support
○ How to check: glxinfo | grep "OpenGL version"

● This means that some of the functionality / 
naming conventions may not follow the 4.2 
specifications exactly (ie. don't trust the docs 
or the language spec)



Using glxinfo

● glxinfo is your friend
● running glxinfo will spit out all the data you 

ever need about gfx support
○ Probably want to grep stuff since this is a lot

● Example : discovering which extensions are 
supported
○ glxinfo | grep GL_NV_
○ glxinfo | grep GL_EXT_

● Example : determining your video card 
○ glxinfo | grep string



The Current OpenGL Pipeline
No longer really a pipeline, more like the NY subway system

 



OpenGL 4.2

● Because we're on 4.1 drivers, this means we 
need to declare extensions when we want to 
use 4.2 functionality

● In GL, you should append EXT to 4.2 
functions

● In GLSL, you need to add
#extension GL_NV_gpushader5 : enable
● Plus whatever extension defines you plan to 

use (different for each 4.2 feature)



OpenGL 4.2 New Features

● Shader Atomic Counters
○ Atomic functions to increment / decrement counters

● Shader Image Load Stores
○ Atomic functions to read / write from a single texture 

level
● Texture Storage

○ Immutable textures
● Transform Feedback Instanced

○ Draw multiple instances of a transform feedback 
object

● Shading Language 4.2 pack
○ New GLSL features



OpenGL 4.2 New Features

● Texture Compression BPTC
○ Support for new compression format (same format 

as BC6H / BC7 in DX11)
● Base Instance

○ Specify offset within buffer objects for instanced 
drawing

● Internal format query
○ Query supported samples for an internal format

● Plus many performance improvements
○ Arbitrary modification of a subset of a compressed 

texture (requested by Blizzard)
○ Small data type packing into larger, GLSL shaders 

can r/w to 16 bit floating point encodings
○ and more....



Immutable Texture Storage

● Texture structure is immutable on creation (format, 
dimensions, mipmaps)

● Contents are mutable
void TexStorage{1D,2D,3D}(enum target, sizei 
levels, enum internalformat, sizei width, 
sizei height, sizei depth)

● Addresses OpenGL's rather ad hoc resource 
management (the drivers don't know anything about the 
texture at the beginning of a draw...)
○ ie. might need to alloc more memory for mipmaps, 

resulting in poor allocation patterns and performance 
losses



Shader Atomic Counters

● Probably won't use much, although this is a pretty 
important extension
○ one of the reason's we're not using it is I don't think 

the cards even support this...
● Allows for a GPU global atomic counter

● Atomic means that they are single unbroken 
operations

● No critical problems across multiple shader 
invocations, but some ambiguity, as we will see later

 

 



Shader Atomic Counters
http://www.opengl.org/registry/specs/ARB/shader_atomic_counters.txt

● Defines a new type, atomic_uint
● Useful functions:

uint atomicCounterIncrement(atomic_uint)
Increments & returns val prior to increment
uint atomicCounterDecrement(atomic_uint)
Decrements & returns val after decrement
uint atomicCounter(atomic_uint)
Returns val

● Note that shader atomic counters are much faster than 
image atomic functions on AMD hardware, although this 
might not be the case for NVIDIA hardware

 

http://www.opengl.org/registry/specs/ARB/shader_atomic_counters.txt


Shader Image Load Stores

● These are probably the most exciting part of 
GL 4.2

● Shader image load stores allow shaders to 
load, store, and perform atomic read-modify-
write operations to an image from any 
shader stage

● To use this functionality in your shader, you 
must define

#extension GL_EXT_shader_image_load_store : enable



OpenGL Images

● An image is basically a single level of a 
texture (note: I think this is a terrible name...)

● OpenGL now allows you to bind a single 
level of a texture to an "image unit"

● You give up some things like mipmapping 
and automatic filtering

● In return, you have the ability to perform 
arbitrary read / write / atomic operations on 
texels



Atomic Image Operations

● You can load and store from arbitrary points 
in an image unit

● You can also perform operations like 
imageAtomic* with an immediate value
○ Max, And, Or, Swap, etc.

● Can edit textures inside the shader at any 
stage

 



Image Functions (C++)

● glBindImageTexture
○ You will have to call glBindImageTextureEXT

● Parameters: (uint index, uint texture, int level, boolean 
layered, int layer, enum access, int format)
○ index - the index of the image unit you want to bind to (starts at 0)
○ texture - the id of the texture you want to bind to the image unit 

(generated by glGenTextures)
○ level - the level of the texture to bind to (0 for full resolution)
○ layered - if you are binding a layer of a 2D texture to a 1D texture, or a 

layer of a 3D texture to a 2D texture
○ layer - the number of the layer to bind if you are using a layered 

texture, otherwise ignored
○ access - read only, write only, readwrite
○ format - format of the pixels in the image



Image Functions (shader)

● imageLoad, imageStore
● imageAtomic*

○ Does the computation, stores the result in the image, 
and returns the value

● Note that you index into an image using 
integer offsets, not normalized texture 
coordinates!

● You need to pass in an ivec, might require 
some conversion of texture coordinates and 
such



A Trivial Example (with color!)
#version 410 core
#extension GL_NV_gpu_shader5 : enable
#extension GL_EXT_shader_image_load_store : enable
coherent restrict uniform layout(size4x32) image2D image;
#ifdef _VERTEX_

...
#endif
#ifdef _FRAGMENT_
out vec4 out_Color;
void main() {

ivec2 coord = ivec2(gl_FragCoord.xy);
out_Color = imageLoad(image, coord);

}
#endif



Image layout qualifiers
coherent uniform layout(size4x32) image2D myImage;
volatile uniform layout(size1x8) uimage1D uIntArray;
coherent restrict uniform layout(size4x32) image3D APM;

● The layout qualifiers correspond to the texture format
size1x8 : R8I, R8UI
size1x16 : R16I, R16UI
size1x32 : R32F, R32I, R32UI
size2x32 : RG32F, RG32I, RG32UI
size4x32 : RGBA32F, RGBA32I, RGBA32UI

● Note that this is different from what is defined in the 4.2 
lang spec (which will not work)



coherent

Memory accesses are done with similar accesses from 
other shader threads.  
 
When reading a variable declared as "coherent", the values 
returned will reflect the results of previously completed 
writes by other shader threads.  
 
Note that Shader memory reads and writes complete in a 
largely undefined order (see memory barriers).
 
You'll be using this most of the time
 



volatile

Volatile implies the image could be read/written at any point 
during shader execution by some source other than 
executing thread. 
 
When reading a volatile, its value must re-fetched from the 
underlying memory, even if the thread performing read had 
already fetched its value from the same memory once.  
When writing, its value must be written to the memory, 
even if the compiler can conclusively determine that its will 
be overwritten by a subsequent write.  
 
Since the external reading or writing may be another 
shader thread, volatiles are automatically treated as 
coherent.
 



restrict

Restrict variables may be compiled assuming that the 
variable used to perform memory access is the only way to 
access the underlying memory using the shader stage in 
question.  
 
This allows the compiler to coalesce or loads and stores 
using "restrict"-qualified image variables in ways wouldn't 
be permitted for image variables not so qualified, because 
compiler can assume that the underlying image won't be 
read or written other code.  
 
Incorrectly declaring a variable restrict will have undefined 
results.
 



const

Memory accesses to image variables declared 
using the "const" qualifier may only read the 
underlying memory, which is treated read-only.
It is an error to pass an image variable qualified 
"const" to imageStore() or imageAtomic*().
 
Also I'm pretty sure const doesn't work on the 
department machines.
 



readonly / writeonly

Image variables can be declared as read only 
and write only, and should match the call to 
glBindImageTexture.
 
However, these qualifiers seem not to be 
supported by the department machines.



Other...

● You can also use layout qualifiers when 
declaring function arguments.  However, 
these qualifiers can only add qualifications; 
they cannot remove them



Memory Barriers

● With all of this editing going on, how do you 
guarantee the order of operations?

● Memory barriers (both in the shader and 
C++) can guarantee that all operations of a 
particular type finish before continuing
○ The shader version only checks for memory 

accesses in general, C++ can specify type of 
operations to wait for

● This way, you can synchronize your shaders 
to behave in a more predictable manner



Why Use Memory Barriers?

● Most of the time you don't really notice these memory 
synchronicity issues
○ However, with atomic operations especially, we can have problems

● For example, say you draw two primitives with the same 
shader (A first, B second)
○ Shader invocations on A are not necessarily guaranteed to happen 

before invocations on B
○ You might say "wait, but then why do later primitives always get drawn 

on top when we disable depth test?"
○ B will always be drawn to the framebuffer later, but actual shader 

operations (like image stores) are not guaranteed to happen later

● You can use memory barriers to guarantee this ordering



Insert



Two more inserts



Two inserts (one link push)



List access



● Draw all transparent objects into the pixel list
● For each pixel, sort its fragment list and 

blend them together to make the final image
● Use whatever blend function you want to get 

the final blended transparent pixel value
● GDC 2010: OIT and GI using DX11 linked lists (Nick 

Thibieroz & Holger Grün)

Mini Case Study: Order Independent 
Transparency (AMD)

http://developer.amd.com/gpu_assets/OIT%20and%20Indirect%20Illumination%20using%20DX11%20Linked%20Lists_forweb.ppsx
http://developer.amd.com/gpu_assets/OIT%20and%20Indirect%20Illumination%20using%20DX11%20Linked%20Lists_forweb.ppsx
http://developer.amd.com/gpu_assets/OIT%20and%20Indirect%20Illumination%20using%20DX11%20Linked%20Lists_forweb.ppsx


Result



Mini Case Study

NVIDIA Grid 
Hashing

http://developer.download.nvidia.com/presentations/2008/GDC/GDC08_ParticleFluids.pdf

http://developer.download.nvidia.com/presentations/2008/GDC/GDC08_ParticleFluids.pdf


● Grid built from scratch each frame
● Algorithm

○ Computer grid cell for each particle (based on 
center)

○ Calculate cell index
○ Sort particles based on cell index
○ Store start of each bucket in a sorted array
○ Process collisions by looking at a localized 

neighborhood of cells for each particle

NVIDIA Grid Hashing



Pictures!



Depth Buffers

● You probably already know of the depth/z 
buffer

● Useful for a lot of things aside from depth 
testing

● Quick way to get some basic 3D image 
space information



Depth Buffer Precision

● Depth buffer values are stored as integers
 z_buffer_value = (1<<N) * ( a + b / z )

  Where:
     N = number of bits of Z precision
     a = zFar / ( zFar - zNear )
     b = zFar * zNear / ( zNear - zFar )
     z = distance from the eye to the object

● This means that depth buffer precision is proportional to 
1/depth, so we have more precision closer to the near 
plane\

● If you have depth precision problems, increase the bits 
in the depth buffer or move the near plane farther from 
the eye

 http://www.sjbaker.org/steve/omniv/love_your_z_buffer.html

http://www.sjbaker.org/steve/omniv/love_your_z_buffer.html


Using the Depth Buffer in Your Code

● Support code framebuffer object has a 
depth() method which returns the texture id 
of the depth texture for that framebuffer

● You can bind this texture as a sampler2D 
just like any other texture



Basic Shadow 
Mapping

Case Study



Shadow Mapping with Depth Buffer

● Old, basic technique for making shadows
● Some problems with aliasing due to being an 

image space technique; quality is dependent 
on texture resolution and view

● However, a simple and effective way of 
generating shadows



Shadow Mapping with Depth Buffer

● Draw the scene from the light's point of view; 
save the depth buffer

● Next, draw the scene from the normal 
camera view
○ For each fragment, calculate the distance to the light
○ If that distance is greater than the value in the light 

view depth map for that fragment's position, the light 
saw an occluder instead of the object, so the point is 
in shadow

○ If they are the same, no occlusion



Some More Details

● How do we find correspondence between light view 
depth map and fragment positions from the camera's 
point of view?
○ Multiply camera space coordinates by a matrix T such that T = 

PLMLMC
-1

■ PL is the light's projection matrix
■ ML is the light's modelview matrix
■ MC is the camera's modelview matrix

○ This translates a point in camera space into the light's clip space
○ But we have access to the world space coordinates so we can just use 

PLML to change from world space to light's clip space

○ Then just map clip space [-1, 1] to texture coordinates [0, 1] and you 
can index into the depth map



Some Tips on Multiple Render 
Targets

● For multiple render targets, set the 
nColorAttachments field of the framebuffer 
parameters to however many color 
attachments that you want

● When you want to use a framebuffer as a 
texture, use bindsurface(n) where n is the 
index of the color attachment you want to 
use



Multiple Render Targets

● You need to call glDrawBuffers() to set the 
color attachments to the proper render 
targets
GLenum buffers[n] = {GL_COLOR_ATTACHMENT0, ... , 

GL_COLOR_ATTACHMENTn };
glDrawBuffers(n, buffers);

● Call glBindFragDataLocation to tell the 
shader what render target to draw to
○ By default, it assumes that the first output is the first 

render target, second is the second render target, 
etc.



Multitexturing

● If you want to use multiple textures in a shader...
glActiveTexture(GL_TEXTURE0);
glBindTexture(...);
glActiveTexture(GL_TEXTURE1);
glBindTexture(...);
shader.bind(...);
shader.setUniformValue("sampler0", 0);
shader.setUniformValue("sampler1", 1);

● To clear textures you need to again call glActiveTexture 
before calling glBindTexture(GL_TEXTURE_2D, 0);


