
CS195V Week 7
Fluids?!

Overview
● Hopefully you're making good progress on

the NBody project
○ Or at least started, maybe? (No you haven't, who are

we kidding)
○ No really, you should start

● Now we have this nice particle engine, why
not use it for other things?

● How about simulating fluids?

Fluids, in General
● Matter made up of atoms/molecules
● When in a liquid or gaseous state, such

matter dynamically changes shape based on
environment

● Fluids can be described by the Navier Stokes
Equations

● Two primary ways to model fluids in gfx
○ Grid based methods
○ Particle based methods

● You already have a particle sim from NBody,
so we're going to talk about particle methods

Grids vs Particles
● Grid based methods must subdivide the

region into a grid and compute flow fields for
each cell in the grid
○ This has some limitations including limited spatial

extent, choice of grid size, extension to multiple
fluids, and collision / boundary conditions

● Particle based methods only calculate forces
at particle locations and can trivially be
extended to incorporate multiple fluids into
one simulation

Smoothed Particle
Hydrodynamics
● Model the fluid as a set of discrete units, or

particles
● The properties of each particle are

determined by applying some kernel
function to each of its neighbors
○ Much like a filter kernel (we know how much you

guys love those)
○ Sounds parallelizable!

SPH
● Smoothed particle hydrodynamics originates

from computational astrophysics and is
designed for compressible flow problems

● SPH can approximate derivatives at any
location by operating on arbitrary particle
locations
○ It is basically an interpolation method

● Some notation
○ rho - density
○ p - pressure
○ r - a point (x, y) or (x, y, z)

Fluids
The acceleration for each particle

a = du/dt = F / rho

where u is the velocity and F is the total force
on the particle and rho is the mass density

SPH Equations
The General SPH Equation (see Kelager 06
Section 3 for derivation) :

● A is the quantity you want to find for a particle (it is the

integral interpolant over a delta function, which in this
case is approximated using the kernel W)

● m is the mass of a given particle
● W is the kernel function (takes in a distance)

○ h is known as the core radius, or width of the kernel;
it controls the smoothness or roughness of the kernel

More SPH
● What does this equation mean?
● A is only a function of r, the position, which

means that even though we have a discrete
set of particles, we can calculate a property at
any arbitrary position

● What do we need to solve the equation?
○ Mass of particle, just some control variable
○ Density (how to calculate?)
○ Kernel function W

Calculating Density
● We want the density of the fluid at any given

location
● What happens if we plug in density for the

quantity A in the original equation?
● We get...

● Easy to calculating knowing mass, positions,

and kernel function

Kernel Functions
● They're back again...
● Just a weighting function which determines

how you sum up the contributions from the
neighbors

● You could use a box if you are lame
● Generally people use Gaussians or cubic

splines
○ Concern with speed and locality of neighborhood

● However, you may find that certain
quantities give better results with certain
kernels

Calculating Forces
Alright we're going to look at the paper because
there's a lot of math.

On Fluids
● Now we have the general foundation, how to

apply to fluids?
● We need to keep track of position and

velocity of each particle, and update these
quantities based on the forces from fluid
dynamics

● See http://www.inf.ufrgs.br/cgi2007/cd_cgi/papers/harada.pdf for detailed
explanation, including how to deal with walls

http://www.inf.ufrgs.br/cgi2007/cd_cgi/papers/harada.pdf

Applying to NBody
● You already should have a way to keep track

of particles (positions and velocities)
● Just need to change your simulation

calculation to use these fluid calculations
rather than the gravitation equations

Rendering
● Point sprites are all well and good, but how

would we render our particle system as a
convincing fluid?

● Have to generate some kind of 3D mesh for
the fluid surfaces
○ This is actually kind of difficult...

Marching Cubes
Case Study

images from http://www.exaflop.org/docs/marchcubes/

http://www.exaflop.org/docs/marchcubes/

Marching Cubes
● First developed in 1987 for visualizing MRI

and CT scans
● Generates a 3D mesh from a 3D value field

○ Certain points in the field defined as inside and
outside the shape

● For each cube, check which of its vertices are
inside and outside the shape, then generate
the polygons for the cube based on this
configuration

Stupid 2D Example

Polygons generated from different vertex combinations

3D example

● How do we improve it?
● For each generated polygon vertex, displace

it to the actual surface of the shape
● This is called adaptive marching cubes

It's all jagged and stuff...

2D example

3D example

● How to determine if a given point is "inside"
the fluid?

● Many methods represent the particles as
metaballs
○ A set of metaballs can blend together to form a 3D

value function
● Also, a relatively new attempt:

○ http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05613495

○ Render using 3D volume textures and perspective
grids

Marching Cubes on SPH

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05613495

Basic Metaballs

Metaballs

More

More

Perspective Grid Method

More

More

Screen Space Fluid
Rendering?!

Case Study
http://developer.download.nvidia.com/presentations/2010/gdc/Direct3D_Effects.pdf

http://developer.download.nvidia.com/presentations/2010/gdc/Direct3D_Effects.pdf

