MorePropMore about Propositions and Evidence


Require Export "Prop".

Programming with Propositions

A proposition is a statement expressing a factual claim, like "two plus two equals four." In Coq, propositions are written as expressions of type Prop. Although we haven't mentioned it explicitly, we have already seen numerous examples.

Check (2 + 2 = 4).
(* ===> 2 + 2 = 4 : Prop *)

Check (ble_nat 3 2 = false).
(* ===> ble_nat 3 2 = false : Prop *)

Check (beautiful 8).
(* ===> beautiful 8 : Prop *)

Both provable and unprovable claims are perfectly good propositions. Simply being a proposition is one thing; being provable is something else!

Check (2 + 2 = 5).
(* ===> 2 + 2 = 5 : Prop *)

Check (beautiful 4).
(* ===> beautiful 4 : Prop *)

Both 2 + 2 = 4 and 2 + 2 = 5 are legal expressions of type Prop.
We've seen one place that propositions can appear in Coq: in Theorem (and Lemma and Example) declarations.

Theorem plus_2_2_is_4 :
  2 + 2 = 4.
Proof. reflexivity. Qed.

But they can be used in many other ways. For example, we can give a name to a proposition using a Definition, just as we have given names to expressions of other sorts.

Definition plus_fact : Prop := 2 + 2 = 4.
Check plus_fact.
(* ===> plus_fact : Prop *)

We can later use this name in any situation where a proposition is expected — for example, as the claim in a Theorem declaration.

Theorem plus_fact_is_true :
  plus_fact.
Proof. reflexivity. Qed.

We've seen several ways of constructing propositions.
  • We can define a new proposition primitively using Inductive.
  • Given two expressions e1 and e2 of the same type, we can form the proposition e1 = e2, which states that their values are equal.
  • We can combine propositions using implication and quantification.
We have also seen parameterized propositions, such as even and beautiful.

Check (even 4).
(* ===> even 4 : Prop *)
Check (even 3).
(* ===> even 3 : Prop *)
Check even.
(* ===> even : nat -> Prop *)

The type of even, i.e., natProp, can be pronounced in three equivalent ways: (1) "even is a function from numbers to propositions," (2) "even is a family of propositions, indexed by a number n," or (3) "even is a property of numbers."
Propositions — including parameterized propositions — are first-class citizens in Coq. For example, we can define functions from numbers to propositions...

Definition between (n m o: nat) : Prop :=
  andb (ble_nat n o) (ble_nat o m) = true.

... and then partially apply them:

Definition teen : natProp := between 13 19.

We can even pass propositions — including parameterized propositions — as arguments to functions:

Definition true_for_zero (P:natProp) : Prop :=
  P 0.

Here are two more examples of passing parameterized propositions as arguments to a function.
The first function, true_for_all_numbers, takes a proposition P as argument and builds the proposition that P is true for all natural numbers.

Definition true_for_all_numbers (P:natProp) : Prop :=
  n, P n.

The second, preserved_by_S, takes P and builds the proposition that, if P is true for some natural number n', then it is also true by the successor of n' — i.e. that P is preserved by successor:

Definition preserved_by_S (P:natProp) : Prop :=
  n', P n' P (S n').

If we have these as building blocks, we can use them to build up other functions

Definition induction_on_nat (P:natProp)
  (P0 : true_for_zero P)
  (PnSn : preserved_by_S P) : true_for_all_numbers P :=
  fix do_inductive_step (n : nat) : P n :=
  match n with
    | 0 => P0
    | S n' => PnSn n' (do_inductive_step n')
  end.
Check induction_on_nat.
(* ===> induction_on_nat
     : forall P : nat -> Prop,
       true_for_zero P -> preserved_by_S P -> true_for_all_numbers P *)

In other words, induction isn't magic -- it's recursion!

Exercise: 3 stars (combine_odd_even)

Complete the definition of the combine_odd_even function below. It takes as arguments two properties of numbers Podd and Peven. As its result, it should return a new property P such that P n is equivalent to Podd n when n is odd, and equivalent to Peven n otherwise.

Definition combine_odd_even (Podd Peven : nat Prop) : nat Prop :=
  (* FILL IN HERE *) admit.

To test your definition, see whether you can prove the following facts:

Theorem combine_odd_even_intro :
  (Podd Peven : nat Prop) (n : nat),
    (oddb n = true Podd n)
    (oddb n = false Peven n)
    combine_odd_even Podd Peven n.
Proof.
  (* FILL IN HERE *) Admitted.

Theorem combine_odd_even_elim_odd :
  (Podd Peven : nat Prop) (n : nat),
    combine_odd_even Podd Peven n
    oddb n = true
    Podd n.
Proof.
  (* FILL IN HERE *) Admitted.

Theorem combine_odd_even_elim_even :
  (Podd Peven : nat Prop) (n : nat),
    combine_odd_even Podd Peven n
    oddb n = false
    Peven n.
Proof.
  (* FILL IN HERE *) Admitted.


One more quick digression, for adventurous souls: if we can define parameterized propositions using Definition, then can we also define them using Fixpoint? Of course we can! However, this kind of "recursive parameterization" doesn't correspond to anything very familiar from everyday mathematics. The following exercise gives a slightly contrived example.

Exercise: 4 stars, optional (true_upto_n__true_everywhere)

Define a recursive function true_upto_n__true_everywhere that makes true_upto_n_example work.

(* 
Fixpoint true_upto_n__true_everywhere
(* FILL IN HERE *)

Example true_upto_n_example :
    (true_upto_n__true_everywhere 3 (fun n => even n))
  = (even 3 -> even 2 -> even 1 -> forall m : nat, even m).
Proof. reflexivity.  Qed.
*)


Induction Principles

This is a good point to pause and take a deeper look at induction principles.
Every time we declare a new Inductive datatype, Coq automatically generates an induction principle for this type.
The induction principle for a type t is called t_ind. Here is the one for natural numbers:

Check nat_ind.
(*  ===> nat_ind : 
           forall P : nat -> Prop,
              P 0  ->
              (forall n : nat, P n -> P (S n))  ->
              forall n : nat, P n  *)


The induction tactic is a straightforward wrapper that, at its core, simply performs apply t_ind. To see this more clearly, let's experiment a little with using apply nat_ind directly, instead of the induction tactic, to carry out some proofs. Here, for example, is an alternate proof of a theorem that we saw in the Basics chapter.

Theorem mult_0_r' : n:nat,
  n * 0 = 0.
Proof.
  apply nat_ind.
  Case "O". reflexivity.
  Case "S". simpl. intros n IHn. rewrite IHn.
    reflexivity. Qed.

This proof is basically the same as the earlier one, but a few minor differences are worth noting. First, in the induction step of the proof (the "S" case), we have to do a little bookkeeping manually (the intros) that induction does automatically.
Second, we do not introduce n into the context before applying nat_ind — the conclusion of nat_ind is a quantified formula, and apply needs this conclusion to exactly match the shape of the goal state, including the quantifier. The induction tactic works either with a variable in the context or a quantified variable in the goal.
Third, the apply tactic automatically chooses variable names for us (in the second subgoal, here), whereas induction lets us specify (with the as... clause) what names should be used. The automatic choice is actually a little unfortunate, since it re-uses the name n for a variable that is different from the n in the original theorem. This is why the Case annotation is just S — if we tried to write it out in the more explicit form that we've been using for most proofs, we'd have to write n = S n, which doesn't make a lot of sense! All of these conveniences make induction nicer to use in practice than applying induction principles like nat_ind directly. But it is important to realize that, modulo this little bit of bookkeeping, applying nat_ind is what we are really doing.

Exercise: 2 stars, optional (plus_one_r')

Complete this proof as we did mult_0_r' above, without using the induction tactic.

Theorem plus_one_r' : n:nat,
  n + 1 = S n.
Proof.
  (* FILL IN HERE *) Admitted.
The induction principles that Coq generates for other datatypes defined with Inductive follow a similar pattern. If we define a type t with constructors c1 ... cn, Coq generates a theorem with this shape:
    t_ind :
       P : t  Prop,
            ... case for c1 ...
            ... case for c2 ...
            ...
            ... case for cn ...
            n : tP n
The specific shape of each case depends on the arguments to the corresponding constructor. Before trying to write down a general rule, let's look at some more examples. First, an example where the constructors take no arguments:

Inductive yesno : Type :=
  | yes : yesno
  | no : yesno.

Check yesno_ind.
(* ===> yesno_ind : forall P : yesno -> Prop, 
                      P yes  ->
                      P no  ->
                      forall y : yesno, P y *)


Exercise: 1 star (rgb)

Write out the induction principle that Coq will generate for the following datatype. Write down your answer on paper or type it into a comment, and then compare it with what Coq prints.

Inductive rgb : Type :=
  | red : rgb
  | green : rgb
  | blue : rgb.
Check rgb_ind.
Here's another example, this time with one of the constructors taking some arguments.

Inductive natlist : Type :=
  | nnil : natlist
  | ncons : nat natlist natlist.

Check natlist_ind.
(* ===> (modulo a little tidying)
   natlist_ind :
      forall P : natlist -> Prop,
         P nnil  ->
         (forall (n : nat) (l : natlist), P l -> P (ncons n l)) ->
         forall n : natlist, P n *)


Exercise: 1 star (natlist1)

Suppose we had written the above definition a little differently:

Inductive natlist1 : Type :=
  | nnil1 : natlist1
  | nsnoc1 : natlist1 nat natlist1.

Now what will the induction principle look like?
From these examples, we can extract this general rule:

Exercise: 1 star (ex_set)

Here is an induction principle for an inductively defined set.
      ExSet_ind :
         P : ExSet  Prop,
             (b : boolP (con1 b)) 
             ((n : nat) (e : ExSet), P e  P (con2 n e)) 
             e : ExSetP e
Give an Inductive definition of ExSet:

Inductive ExSet : Type :=
  (* FILL IN HERE *)
.
What about polymorphic datatypes?
The inductive definition of polymorphic lists
      Inductive list (X:Type) : Type :=
        | nil : list X
        | cons : X  list X  list X.
is very similar to that of natlist. The main difference is that, here, the whole definition is parameterized on a set X: that is, we are defining a family of inductive types list X, one for each X. (Note that, wherever list appears in the body of the declaration, it is always applied to the parameter X.) The induction principle is likewise parameterized on X:
     list_ind :
       (X : Type) (P : list X  Prop),
          P [] 
          ((x : X) (l : list X), P l  P (x :: l)) 
          l : list XP l
Note the wording here (and, accordingly, the form of list_ind): The whole induction principle is parameterized on X. That is, list_ind can be thought of as a polymorphic function that, when applied to a type X, gives us back an induction principle specialized to the type list X.

Exercise: 1 star (tree)

Write out the induction principle that Coq will generate for the following datatype. Compare your answer with what Coq prints.

Inductive tree (X:Type) : Type :=
  | leaf : X tree X
  | node : tree X tree X tree X.
Check tree_ind.

Exercise: 1 star (mytype)

Find an inductive definition that gives rise to the following induction principle:
      mytype_ind :
        (X : Type) (P : mytype X  Prop),
            (x : XP (constr1 X x)) 
            (n : natP (constr2 X n)) 
            (m : mytype XP m  
               n : natP (constr3 X m n)) 
            m : mytype XP m                   

Exercise: 1 star, optional (foo)

Find an inductive definition that gives rise to the following induction principle:
      foo_ind :
        (X Y : Type) (P : foo X Y  Prop),
             (x : XP (bar X Y x)) 
             (y : YP (baz X Y y)) 
             (f1 : nat  foo X Y,
               (n : natP (f1 n))  P (quux X Y f1)) 
             f2 : foo X YP f2       

Exercise: 1 star, optional (foo')

Consider the following inductive definition:

Inductive foo' (X:Type) : Type :=
  | C1 : list X foo' X foo' X
  | C2 : foo' X.

What induction principle will Coq generate for foo'? Fill in the blanks, then check your answer with Coq.)
     foo'_ind :
        (X : Type) (P : foo' X  Prop),
              ((l : list X) (f : foo' X),
                    _______________________  
                    _______________________   ) 
             ___________________________________________ 
             f : foo' X________________________

Induction Hypotheses

Where does the phrase "induction hypothesis" fit into this story?
The induction principle for numbers
       P : nat  Prop,
            P 0  
            (n : natP n  P (S n))  
            n : natP n
is a generic statement that holds for all propositions P (strictly speaking, for all families of propositions P indexed by a number n). Each time we use this principle, we are choosing P to be a particular expression of type natProp.
We can make the proof more explicit by giving this expression a name. For example, instead of stating the theorem mult_0_r as " n, n * 0 = 0," we can write it as " n, P_m0r n", where P_m0r is defined as...

Definition P_m0r (n:nat) : Prop :=
  n * 0 = 0.

... or equivalently...

Definition P_m0r' : natProp :=
  fun n => n * 0 = 0.

Now when we do the proof it is easier to see where P_m0r appears.

Theorem mult_0_r'' : n:nat,
  P_m0r n.
Proof.
  apply nat_ind.
  Case "n = O". reflexivity.
  Case "n = S n'".
    (* Note the proof state at this point! *)
    unfold P_m0r. simpl. intros n' IHn'.
    apply IHn'. Qed.

This extra naming step isn't something that we'll do in normal proofs, but it is useful to do it explicitly for an example or two, because it allows us to see exactly what the induction hypothesis is. If we prove n, P_m0r n by induction on n (using either induction or apply nat_ind), we see that the first subgoal requires us to prove P_m0r 0 ("P holds for zero"), while the second subgoal requires us to prove n', P_m0r n' P_m0r n' (S n') (that is "P holds of S n' if it holds of n'" or, more elegantly, "P is preserved by S"). The induction hypothesis is the premise of this latter implication — the assumption that P holds of n', which we are allowed to use in proving that P holds for S n'.

Optional Material

This section offers some additional details on how induction works in Coq and the process of building proof trees. It can safely be skimmed on a first reading. (We recommend skimming rather than skipping over it outright: it answers some questions that occur to many Coq users at some point, so it is useful to have a rough idea of what's here.)

Induction Principles in Prop

Earlier, we looked in detail at the induction principles that Coq generates for inductively defined sets. The induction principles for inductively defined propositions like gorgeous are a tiny bit more complicated. As with all induction principles, we want to use the induction principle on gorgeous to prove things by inductively considering the possible shapes that something in gorgeous can have — either it is evidence that 0 is gorgeous, or it is evidence that, for some n, 3+n is gorgeous, or it is evidence that, for some n, 5+n is gorgeous and it includes evidence that n itself is. Intuitively speaking, however, what we want to prove are not statements about evidence but statements about numbers. So we want an induction principle that lets us prove properties of numbers by induction on evidence.
For example, from what we've said so far, you might expect the inductive definition of gorgeous...
    Inductive gorgeous : nat  Prop :=
         g_0 : gorgeous 0
       | g_plus3 : ngorgeous n  gorgeous (3+m)
       | g_plus5 : ngorgeous n  gorgeous (5+m).
...to give rise to an induction principle that looks like this...
    gorgeous_ind_max :
       P : (n : natgorgeous n  Prop),
            P O g_0 
            ((m : nat) (e : gorgeous m), 
               P m e  P (3+m) (g_plus3 m e
            ((m : nat) (e : gorgeous m), 
               P m e  P (5+m) (g_plus5 m e
            (n : nat) (e : gorgeous n), P n e
... because:
But this is a little more flexibility than we actually need or want: it is giving us a way to prove logical assertions where the assertion involves properties of some piece of evidence of gorgeousness, while all we really care about is proving properties of numbers that are gorgeous — we are interested in assertions about numbers, not about evidence. It would therefore be more convenient to have an induction principle for proving propositions P that are parameterized just by n and whose conclusion establishes P for all gorgeous numbers n:
       P : nat  Prop,
          ...
             n : natgorgeous n  P n
For this reason, Coq actually generates the following simplified induction principle for gorgeous:

Check gorgeous_ind.
(* ===>  gorgeous_ind
     : forall P : nat -> Prop,
       P 0 ->
       (forall n : nat, gorgeous n -> P n -> P (3 + n)) ->
       (forall n : nat, gorgeous n -> P n -> P (5 + n)) ->
       forall n : nat, gorgeous n -> P n *)


In particular, Coq has dropped the evidence term e as a parameter of the the proposition P, and consequently has rewritten the assumption (n : nat) (e: gorgeous n), ... to be (n : nat), gorgeous n ...; i.e., we no longer require explicit evidence of the provability of gorgeous n.
In English, gorgeous_ind says:
We can apply gorgeous_ind directly instead of using induction.

Theorem gorgeous__beautiful' : n, gorgeous n beautiful n.
Proof.
   intros.
   apply gorgeous_ind.
   Case "g_0".
       apply b_0.
   Case "g_plus3".
       intros.
       apply b_sum. apply b_3.
       apply H1.
   Case "g_plus5".
       intros.
       apply b_sum. apply b_5.
       apply H1.
   apply H.
Qed.

Module P.

Exercise: 3 stars, optional (p_provability)

Consider the following inductively defined proposition:

Inductive p : (tree nat) nat Prop :=
   | c1 : n, p (leaf _ n) 1
   | c2 : t1 t2 n1 n2,
            p t1 n1 p t2 n2 p (node _ t1 t2) (n1 + n2)
   | c3 : t n, p t n p t (S n).

Describe, in English, the conditions under which the proposition p t n is provable.
(* FILL IN HERE *)

End P.

More on the induction Tactic

The induction tactic actually does even more low-level bookkeeping for us than we discussed above.
Recall the informal statement of the induction principle for natural numbers:
So, when we begin a proof with intros n and then induction n, we are first telling Coq to consider a particular n (by introducing it into the context) and then telling it to prove something about all numbers (by using induction).
What Coq actually does in this situation, internally, is to "re-generalize" the variable we perform induction on. For example, in the proof above that plus is associative...

Theorem plus_assoc' : n m p : nat,
  n + (m + p) = (n + m) + p.
Proof.
  (* ...we first introduce all 3 variables into the context,
     which amounts to saying "Consider an arbitrary nm, and
     p..." *)

  intros n m p.
  (* ...We now use the induction tactic to prove P n (that
     is, n + (m + p) = (n + m) + p) for _all_ n,
     and hence also for the particular n that is in the context
     at the moment. *)

  induction n as [| n'].
  Case "n = O". reflexivity.
  Case "n = S n'".
    (* In the second subgoal generated by induction -- the
       "inductive step" -- we must prove that P n' implies 
       P (S n') for all n'.  The induction tactic 
       automatically introduces n' and P n' into the context
       for us, leaving just P (S n') as the goal. *)

    simpl. rewrite IHn'. reflexivity. Qed.

It also works to apply induction to a variable that is quantified in the goal.

Theorem plus_comm' : n m : nat,
  n + m = m + n.
Proof.
  induction n as [| n'].
  Case "n = O". intros m. rewrite plus_0_r. reflexivity.
  Case "n = S n'". intros m. simpl. rewrite IHn'.
    rewrite plus_n_Sm. reflexivity. Qed.

Note that induction n leaves m still bound in the goal — i.e., what we are proving inductively is a statement beginning with m.
If we do induction on a variable that is quantified in the goal after some other quantifiers, the induction tactic will automatically introduce the variables bound by these quantifiers into the context.

Theorem plus_comm'' : n m : nat,
  n + m = m + n.
Proof.
  (* Let's do induction on m this time, instead of n... *)
  induction m as [| m'].
  Case "m = O". simpl. rewrite plus_0_r. reflexivity.
  Case "m = S m'". simpl. rewrite IHm'.
    rewrite plus_n_Sm. reflexivity. Qed.

Exercise: 1 star, optional (plus_explicit_prop)

Rewrite both plus_assoc' and plus_comm' and their proofs in the same style as mult_0_r'' above — that is, for each theorem, give an explicit Definition of the proposition being proved by induction, and state the theorem and proof in terms of this defined proposition.

(* FILL IN HERE *)

Additional Exercises

Exercise: 2 stars, optional (foo_ind_principle)

Suppose we make the following inductive definition:
   Inductive foo (X : Set) (Y : Set) : Set :=
     | foo1 : X  foo X Y
     | foo2 : Y  foo X Y
     | foo3 : foo X Y  foo X Y.
Fill in the blanks to complete the induction principle that will be generated by Coq.
   foo_ind
        : (X Y : Set) (P : foo X Y  Prop),   
          (x : X__________________________________
          (y : Y__________________________________
          (________________________________________________
           ________________________________________________

Exercise: 2 stars, optional (bar_ind_principle)

Consider the following induction principle:
   bar_ind
        : P : bar  Prop,
          (n : natP (bar1 n)) 
          (b : barP b  P (bar2 b)) 
          ((b : bool) (b0 : bar), P b0  P (bar3 b b0)) 
          b : barP b
Write out the corresponding inductive set definition.
   Inductive bar : Set :=
     | bar1 : ________________________________________
     | bar2 : ________________________________________
     | bar3 : ________________________________________.

Exercise: 2 stars, optional (no_longer_than_ind)

Given the following inductively defined proposition:
  Inductive no_longer_than (X : Set) : (list X nat  Prop :=
    | nlt_nil  : nno_longer_than X [] n
    | nlt_cons : x l nno_longer_than X l n  
                               no_longer_than X (x::l) (S n)
    | nlt_succ : l nno_longer_than X l n  
                             no_longer_than X l (S n).
write the induction principle generated by Coq.
  no_longer_than_ind
       : (X : Set) (P : list X  nat  Prop),
         (n : nat____________________
         ((x : X) (l : list X) (n : nat),
          no_longer_than X l n  ____________________  
                                  _____________________________ 
         ((l : list X) (n : nat),
          no_longer_than X l n  ____________________  
                                  _____________________________ 
         (l : list X) (n : nat), no_longer_than X l n  
           ____________________

(* $Date: 2013-01-30 14:45:46 -0500 (Wed, 30 Jan 2013) $ *)