CS195Z: Problem Set 2

Due: Wed, 3/4/09
Questions: email Crystal (clkahn)

February 23, 2009

1. Find the compatibility graph and derive the compatibility tree for the species with the following character data set.

Species	1	2	3	4	5	6
Platypus	1	1	0	1	1	1
Elephant	1	1	0	0	0	0
Tiger	1	0	0	1	1	0
Horse	0	0	1	1	1	0
Guinea Pig	0	0	0	0	0	0
Cat	0	0	1	0	0	0

2. Note that the compatibility tree you provided in the previous question was not the same as the mostparsimonious tree for the same set of species. Show that, however, with 5 or fewer species and $0 / 1$ data with unknown ancestral states, the parsimony and compatibility trees will always be the same.
3. Prove that a tree-derived distance satisfies the following 4 properties. Let S be a set of points. For all points x and y in S :
(a) $d(x, y) \geq 0$
(b) $d(x, y)=0$ if and only if $x=y$
(c) $d(x, y)=d(y, x)$
(d) for all x, y, and z in $S, d(x, y) \leq d(x, z)+d(z, y)$
4. Give a method for computing the trimming parameter δ from the additive phylogeny algorithm presented in class.
5. Prove that following statement. If an $n \times n$ distance matrix is ultrametric, then it is additive.
6. Consider a character χ on a set of species. We say χ is trivial if there is at most one state of the character that is assigned to two or more species. Otherwise, χ is non-trivial.
(a) How many non-trivial binary characters are there on a set of size n ?
(b) Let $X=\{A, B, C, D, E\}$. Show that the compatibility graph of non-trivial binary characters on X is isomorphic to the Petersen graph given below.

7. For five species a, b, c, d, and e with distances given by

	a	b	c	d	e
a	0	9	8	7	8
b		0	3	6	7
c			0	5	6
d				0	3
e					0

reconstruct the tree using the neighbor joining algorithm and the UPGMA algorithm. Compare your answers.
8. Suppose we have two nucleotide sequences:

CCGGCCGCGCG
 CGGGCCGGCCG

Using the Jukes-Cantor substitution probabilities $\left(r_{t}=\frac{1}{4}\left(1+3 e^{-4 \alpha t}\right)\right.$ is the probability that a character does not change in time t, and $s_{t}=\frac{1}{4}\left(1-e^{-4 \alpha t}\right)$ is the probability of a change to any other character in time t), show that the maximum likelihood solution is given by

$$
\begin{equation*}
t_{1}+t_{2}=-\frac{3}{4} \ln \frac{3 n_{1}-n_{2}}{3 n_{1}+3 n_{2}} \tag{1}
\end{equation*}
$$

where t_{1} and t_{2} are the maximum likelihood edge lengths, n_{1} is the number of sites where the residues in the two sequences are identical and n_{2} is the number of sites where a substitution occurs. (Recall that for two sequences, there is only one possible tree, namely the one with two branches and a root node which represents the hypothetical common ancestor.)
9. Find the split distance and nearest neighbor interchange distance between the trees

10. Find two trees $T, S \in \mathcal{T}_{n}$ such that the splits metric is $\rho(T, S)=2 n-6$.

