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1. The compatibility graph and tree are:

Figure 1: Compatibility graph.

Figure 2: Compatibility tree.

2. For n ≤ 3, the compatibility and parsimony trees are always the same. Parsimony trees minimize
homoplasy. Recall that a character is incompatible with a tree if it requires exactly 2 changes of state,



whereas compatible characters require 0 or 1 changes of state. With n = 4, each character cannot
evolve with homoplasy. So parsimony tree must equal compatibility tree. With 5 species, there is
exactly one tree topology, and there are exactly 3 internal nodes in a compatibility tree. Consider
the edge e shown in Figure 3 below. For every subtree with at most 3 leaves, we know the three
leaves are compatible (because they must pass the four gametes test). This is true, for example, of the
subtrees containing leaves {1, 3, 8} and {4, 6, 8} in Figure 4. The number of mutations on e, therefore,
must equal the number of mutations on edges e1 and e2 below in Figure 4. So, the compatibility tree
minimizes homoplasy, which implies it is equal to the parsimony tree. Parsimony trees with n ≥ 6
need not equal compatibility trees because changing a character twice along a path may give a better
parsimony score (even though this is homoplasy).

Figure 3: (a)

Figure 4: (b)

3. (a) Tree-derived distances are defined by positive weights on edges. Therefore, since the path between
any two nodes contains either 0 or some positive number of edges, the total distance must be
nonnegative.

(b) →: Because weights on edges are positive, a distance d(x, y) = 0 implies the path from x to y
contains 0 edges, so x and y must be the same node.
←: If 2 nodes are the same, then the path between them contains 0 edges. The sum of 0 positive
numbers is 0.

(c) By the definition of a tree, there is a unique path from x to y. Directions of edges don’t affect
their weights. So, the sum of weights on the x-to-y path is the same as the sum of weights on the
y-to-x path.

(d) Either z is on the path between x and y or it is not. If it is, then the x-to-y path is equal to the
concatenation of the x-to-z and z-to-y paths, implying d(x, y) = d(x, z)+d(z, y). If it is not, then
let v be the node at which the x-to-y and x-to-z paths diverge. Then d(x, y) = d(x, v) + d(v, y),
d(x, z) = d(x, v) + d(v, z), and d(y, z) = d(y, v) + d(v, z). So, d(x, y) = d(x, v) + d(v, y) <
d(x, v) + d(v, y) + 2d(v, z) = d(x, z) + d(z, y).

4. To compute the trimming parameter δ, we must consider quartets of leaf nodes. For a quartet of leaves
1 ≤ i, j, k, l ≤ n, such that i, j and k, l are neighbors, respectively, we compute the min-weight leaf
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edge among the 4 of them. Let e be the edge (or path) between the LCAs of i, j and k, l, as in Figure
4.

The weight of e is:

d(e) =
d(i, k) + d(j, l)− d(i, j)− d(k, l)

2
(1)

Readjust the pairwise distances between these four leaves by subtracting d(e) from them:

d′(i, k) = d(i, k)− d(e) (2)

d′(i, l) = d(i, l)− d(e) (3)

d′(j, k) = d(j, k)− d(e) (4)

d′(j, l) = d(j, l)− d(e) (5)

Of these 4 leaves, then, we can decide which leaf has the shortest leaf edge by summing the distances
from each leaf to all other nodes. The leaf that minimizes this sum is the one whose leaf edge is
shortest. Without loss of generality, suppose i is this node. Then we compute the weight of i’s leaf
edge by:

δi =
d′(i, j) + d′(i, k)− d′(j, k)

2
(6)

Then we delete i, j, k, l from the graph and, for every other quartet of leaves, we compute the min leaf
edge out of those 4 leaves. Once we have considered every node (as part of some quartet), we can take
the min δ computed over all quartets as the trimming parameter.

5. A distance is additive if and only if the four-point condition holds for every quartet of nodes. For an n
x n matrix that is ultrametric, then for any 3 species i, j, k, it must be the case that two of the pairwise
distances between them are equal and are at least as great as the third. Without loss of generality,
let us suppose that, for leaves i, j, k, d(i, k) = d(j, k) ≥ d(i, j). Now consider another leaf l such that
the triple i, j, l satisfies d(i, l) = d(j, l) ≥ d(i, j). Then because d(i, l) = d(j, l) and d(i, k) = d(j, k)
and d(k, i) ≥ d(i, j) and d(l, i) ≥ d(i, j), it must be the case that d(k, i) = d(l, i) ≥ d(k, l) (by the
ultrametric property). Therefore, we have that d(i, k) = d(i, l) = d(j, k) = d(j, l). Therefore, we have
that d(i, j) + d(k, l) ≤ d(i, k) + d(j, l) = d(i, l) + d(j, k), which means that the four-point condition
holds.

6. (a) Let c be a binary character. Suppose that out of n species, i of them have state 0. (Note that
for n < 3, there cannot be non-trivial characters.) If 2 ≤ i ≤ n − 2, then c is non-trivial. We
can choose how to assign the 0 state to species in

(
n
i

)
ways. Then the total number of non-trivial

binary characters on n species is:

n−2∑
i=2

(
n

i

)
= sn −

(
n

0

)
−
(
n

1

)
−
(

n

n− 1

)
−
(
n

n

)
= 2n − 1− n− n− 1 = 2n − 2n− 2 (7)

Because we consider complementary state assignments to be the same, i.e. 00011 is the same as
11100, we must then divide this amount by 2: 2n−1 − n− 1.
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(b) For n = 5, there are 10 non-trivial characters. The compatibility graph of non-trivial characters
on 5 species is given by the Peterson graph:

7. The trees for UPGMA and Neighbor-Joining are:

8. We express the likelihood of sequences S1, S2 given edge lengths t1, t2 as:

L(S1, S2|t1, t2) = (rt)n1(st)n2 = (
1
4

(1 + 3e−4αt))n1(
1
4

(1− e−4αt))n2 (8)

Then the log-likelihood is:

ln(L(S1, S2|t1, t2)) = n1 ln(
1
4

(1 + 3e−4αt)) + n2 ln(
1
4

(1− e−4αt)) (9)

To maximize the log-likelihood, we then find the value of t for which the derivative of ln(L) is equal
to 0:

d ln(L(S1, S2|t1, t2))
dt

= n1
−3αe−4αt

1
4 (1 + 3e−4αt)

+n2
αe−4αt

1
4 (1− e−4αt)

=
(−1

16 αe
−4αt)(3n1 − n2) + ( 1

16αe
−8αt)(3n1 + 3n2)

(1 + 3e−4αt)(1− e−4αt)
(10)
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If we set this value to 0, we get:

(
1
16
αe−4αt)(3n1 − n2) = (

1
16
αe−8αt)(3n1 + 3n2)→ 3n1 − n2

3n1 + 3n2
=
e−8αt

e−4αt
= e−4αt (11)

ln(3n1 − n2)
ln(3n1 + 3n2)

= ln(e−4αt) = −4αt (12)

−1 ln(3n1 − n2)
4 ln(3n1 + 3n2)

= αt = t1 + t2 (13)

9. Splits distance = 9 + 9 - 2*6 = 6.

NNI = 4. From T1, swap the following to get T2: (6,4), (3,6), (1,6), (1,3).

10. The splits metric is:
ρ(T, S) = |Σ(T )|+ |Σ(S)| − 2|Σ(T ) ∩ Σ(S)| (14)

Note that two trees on n species must share all leaf-edge splits. Note that, for n ≥ 3, a full binary tree
has n− 3 internal edges (i.e. edges between internal vertices). So, if |Σ(T ) ∩ Σ(S)| = n then, in order
for ρ(T, S) to equal 2n− 6, we can calculate:

2n− 6 = (2n− 3) + (2n− 3)− 2n. (15)

So, therefore, T and S must share all leaf-edge splits and no internal-edge splits.
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