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ABSTRACT
Motivation: When analyzing protein sequences using se-
quence similarity searches, orthologous sequences (that
diverged by speciation) are more reliable predictors of a
new protein’s function than paralogous sequences (that di-
verged by gene duplication), because duplication enables
functional diversification. The utility of phylogenetic infor-
mation in high-throughput genome annotation (‘phyloge-
nomics’) is widely recognized, but existing approaches are
either manual or indirect (e.g. not based on phylogenetic
trees). Our goal is to automate phylogenomics using ex-
plicit phylogenetic inference. A necessary component is
an algorithm to infer speciation and duplication events in
a given gene tree.
Results: We give an algorithm to infer speciation and
duplication events on a gene tree by comparison to
a trusted species tree. This algorithm has a worst-
case running time of O(n2) which is inferior to two
previous algorithms that are ∼O(n) for a gene tree of n
sequences. However, our algorithm is extremely simple,
and its asymptotic worst case behavior is only realized
on pathological data sets. We show empirically, using
1750 gene trees constructed from the Pfam protein family
database, that it appears to be a practical (and often
superior) algorithm for analyzing real gene trees.
Availability: http://www.genetics.wustl.edu/eddy/forester
Contact: zmasek@genetics.wustl.edu;
eddy@genetics.wustl.edu

INTRODUCTION
Automated sequence function prediction becomes a neces-
sity due to the enormous amount of sequence data cur-
rently produced by the various genome projects. The fact
that many proteins belong to large superfamilies that con-
sist of subfamilies with different biological functions com-
plicates such efforts.

Usually, automated sequence function prediction is done
using methods based on pairwise sequence similarity, such
as BLAST (Altschul et al., 1990). Annotating a new
sequence by transferring annotation from its best BLAST

hits tends to classify novel sequences too aggressively.
Without careful human intervention, it is impossible to
detect when a new sequence is not as similar to known
homologs as it should be, and it in fact represents the
first member of a novel functional subfamily in a larger
superfamily—often an extremely interesting result.

In contrast, analyses using profile search algorithms
such as HMMER (Eddy, 2000) and protein family
databases such as Pfam (Bateman et al., 2000) and
InterPro (Apweiler et al., 2000), classify sequences too
conservatively. They recognize that a new sequence
belongs to a certain family, but do not subclassify the
sequence.

Profile algorithms can be used to align the novel
sequence to a curated alignment of the known family
members. A human annotator can use this multiple
alignment as input for a phylogenetic tree analysis, and
from the placement of the new sequence in the tree of
known sequences can infer a more specific function. This
approach was called ‘phylogenomics’ by Eisen (1998).
This procedure is different from schemes such as the
COG database (Tatusov et al., 2001) in that it directly
uses phylogenetic trees, whereas COG clusters sequences
based on evolutionary relationships indirectly inferred
from sequence similarities.

It is impossible to automate this process fully, because
it is impossible to precisely define what ‘protein function’
means. However, a principle of phylogenomics is that
orthologous sequences (that diverged by speciation) are
more likely to conserve protein function than paralogous
sequences (that diverged by gene duplication). Orthology
and paralogy are precisely defined and can be inferred
from gene and species trees. One simple example of a
phylogenomics approach that is reasonable and automat-
able could thus be stated as follows. If a novel sequence
has orthologs, functional annotation can be transferred
from them (as in best BLAST analysis); if there are
no orthologs, the sequence is classified as just a family
member (as in Pfam/InterPro analysis) and flagged as
possibly the first representative of a novel subfamily.
Other, more sophisticated analyses could be devised.
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Fig. 1. Gene trees and species trees. G1 and G2 are gene trees, S is a species tree. Internal tree nodes representing gene duplications are
labeled as such, other internal nodes represent speciations. The sequence family in tree G1 is comprised of three functional subfamilies: α, β

and γ . The two duplications in G1 can be inferred directly from the redundancy of species names. G2 is a tree of the same family as G1. In
contrast to G1, some sequences are not present in G2, either due to gene loss or incomplete sampling. The second duplication in G2 can only
be inferred by comparing it to the species tree S and recognizing the anomaly of placing the human gene closer to yeast than to nematodes.

At the core of such approaches stands therefore the
distinction between orthologs and paralogs, and hence the
ability to discriminate between duplication and speciation
events on a gene tree.

Algorithms to distinguish between duplications and
speciations have been employed previously in calculating
the dissimilarity between gene trees and species trees,
and in inferring parsimonious species trees from gene
trees by minimizing the number of duplications and gene
losses that must be invoked to reconcile a given gene
sequence tree with the inferred species tree (Eulenstein
and Vingron, 1995; Goodman et al., 1979; Guigo et al.,
1996; Mirkin et al., 1995; Page and Charleston, 1997;
Zhang, 1997). Brute force algorithms to solve this problem
can have unfavorable O(n3) running times. Two known
algorithms solve the problem efficiently with excellent
worst-case running times of ∼O(n) for a gene tree of n
sequences (Zhang, 1997; Eulenstein, 1998; the Eulenstein
algorithm is implemented in the program ‘GeneTree’,
Page, 1998) but both algorithms are somewhat complex.
We describe here a very simple algorithm that appears to
solve the problem even more efficiently on realistic data
sets, though it has an asymptotic worst-case running time
that is less favorable.

ALGORITHM
A gene tree G and the species tree S of the species harbor-
ing the genes of G do not necessarily have to exhibit the
same topology (Page and Holmes, 1998). Gene duplica-
tion, gene loss, and horizontal genetic transfer are some of
the forces causing inconsistencies. Gene duplication can
be trivially inferred when a species contains two or more
homologs belonging to the same gene family (tree G1 in

Figure 1). However, due to gene loss or incomplete sam-
pling of genes in partially sequenced genomes, not all du-
plications are detectable by simple redundancy in a gene
tree (tree G2 in Figure 1). Reliable assignment of nodes
in the gene tree as either duplication events or speciation
events requires comparison to the phylogenetic tree of the
species (tree S in Figure 1).

First let us define how we recognize that a node in a gene
tree G should be assigned as a duplication, given species
tree S. We use a mapping function M which was first
introduced by Goodman et al. (1979) and used elsewhere
(Chen et al., 2000; Eulenstein et al., 1998; Eulenstein and
Vingron, 1995; Guigo et al., 1996; Mirkin et al., 1995;
Page, 1994; Page and Charleston, 1997; Zhang, 1997):

DEFINITION 1. Let G be the set of nodes in a rooted
binary gene tree and S the set of nodes in a rooted binary
species tree. For any node g ∈ G, let γ (g) be the set of
species in which occur the extant genes descendant from
g. For any node s ∈ S, let σ(s) be the set of species in
the external nodes descendant from s. For any g ∈ G, let
M(g) ∈ S be the smallest (lowest) node in S satisfying
γ (g) ⊆ σ(M(g)). That is, M(g) points to the ancestral
species in S that (we infer) harbored ancestral gene g.

Duplications are then defined using M(g) in Goodman
et al. (1979) and formally in Guigo et al. (1996) and Page
and Charleston (1997) as follows:

DEFINITION 2. Let g1 and g2 be the two child nodes
of an internal node g of a rooted binary gene tree G.
Node g is a duplication if and only if M(g) = M(g1)

or M(g) = M(g2).

An example is shown in Figure 2. This approach makes
a parsimony assumption. It postulates the minimal number
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Fig. 2. The mapping function M and the definition of a duplication.
M is symbolized by arrows originating at nodes of the gene tree G
and pointing to nodes in the species tree S. Letters A to D represent
species names. As an example, the mapping for g3 is computed
as follows. According to Definition 1, γ (g3) = {A, C}, hence
M(g3) = s2 since the smallest node s ∈ S satisfying γ (g) ⊆ σ(s)
is s2 for which σ(s2) = {A, B, C}. Each external node of G maps to
the external node in S that is associated with the same species name.
g2 is a duplication according to Definition 2, since it and its child
g3 maps to the same node s2.

of duplications necessary to reconcile the gene tree with
the species tree, and it places those duplications as close
to the external nodes as possible. It minimizes the number
of unobserved genes—due to gene loss or incomplete
sampling—that need to be invoked.

Given the mapping function M(g), using Definition 2
to assign duplications requires only a linear time, O(n)
traversal of a gene tree G for n genes. What about
calculating M(g)? To our knowledge, Page was the first
to implement an algorithm for this problem (Page, 1994),
but the description given is a brute force approach (for
each node g in G, visit each node s in S, compile the
sets γ (g) and σ(s), and compare them). This algorithm
has a running time of O(n3), if the number of species in
S is O(n). To speed this up, observe that M(g) cannot be
lower than M(g1) or M(g2) in S. Furthermore, observe
that M(g) must in fact be the Last Common Ancestor
(LCA) of M(g1) and M(g2). Therefore if we are careful
to traverse G in the right direction, we can assign M(g)

recursively without ever having to explicitly compile or
compare the lists γ (g) and σ(s), and without having to
traverse all of S for each node g. This recursive algorithm
goes as follows:

Input: Rooted binary gene tree G, rooted binary species
tree S of all species in G.

Output: G with ‘duplication’ or ‘speciation’ assigned to
each of its internal nodes.

Initialization
Number nodes of S in preorder traversal
(root = 1, child nodes always larger than
parent node);

For each external node g of G, set M(g) to the

number of the external node in S with the
matching species name;

Recursion
Visit each internal node g of G in postorder
traversal (from external nodes upwards to root):

set a = M(g1); [g1 is child 1 of the current
node g]

set b = M(g2); [g2 is child 2 of the current
node g]

while (a! = b):
if a > b:

set a = parent of node a;
else:

set b = parent of node b;
set M(g) = a;
if (M(g) == M(g1)) or (M(g) == M(g2)):

g is a duplication;
else:

g is a speciation.

A sketch of the running time analysis of this algorithm
is as follows. Initializing M(g) for the external nodes of
G is O(n) if species names are looked up in a hash table
(Cormen et al., 1990). Initializing the numbering of S
is O(n) (again assuming that the number of nodes in S
scales linearly with the number of nodes in G; S can be
smaller than G but not larger). Thus initialization is O(n)
and will not be the rate determining step. In the recursion,
we visit each of the n −1 internal nodes in G individually,
and at each node we find the LCA of M(g1) and M(g2)

simply by brute force, by climbing the tree from both
points until we meet. The computational cost of finding
LCAs in this manner depends on the topology of G and S.
In the best case, G has no duplications and the topology
of G and S are the same; each LCA determination costs
O(1), no node in S will be reached more than twice
in the whole algorithm, and the overall running time is
therefore O(n) (Figure 3A). In a pathological bad case,
if M(g) for all internal nodes in G pointed to the root
of the species tree (itself a special case of the unusual
situation in which all parent nodes of all internal nodes
are gene duplication events), and nonetheless no more
than one gene in G is found in each species, each LCA
determination would require climbing the entire height of
tree S, which for a balanced binary tree would be log n,
giving an overall running time of O(n log n) (Figure 3B).
Finally, in the pathological worst case, not only would
each LCA require climbing all of the height of S, but
S could also be a maximally unbalanced tree (a tree in
which each internal node has at least one external child,
also called a ‘pectinate’ tree) with a height of n, giving
an overall running time of O(n2) (Figure 3C). The space
complexity of the algorithm is O(n), since only the two
trees and a constant number of auxiliary variables need to
be stored.
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Fig. 3. The number of duplications and the topology of the species
tree influence the time complexity of our algorithm. G1 to G3
are gene trees, S1 and S2 are species trees. M is symbolized by
arrows originating at nodes of the gene tree and pointing to nodes
in the species tree. Letters A to D represent species names. Circled
nodes are duplications. Arrows inside the species trees symbolize
the movement of variables a and b (see text).

Algorithms with more efficient asymptotic bounds on
running time have been published. The closest to ours
are those of Zhang (1997) and Chen et al. (2000). Both
observe that LCA calculations can be done in O(1)
time, for instance using the LCA algorithms described
by Schieber and Vishkin (1988) or by JáJá (1991). The
trick is that the LCA of any two nodes on a complete
binary tree can be calculated by direct arithmetic. The
tree S (which in general is not a complete binary tree)
is therefore preprocessed in such as way that the nodes
of S are associated with nodes in a complete binary
tree; this preprocessing takes O(n) time. A quite different
algorithm, developed by Eulenstein (1998), calculates M
in O(nα(n, n)) time, where α(n, n) is the very slowly
growing inverse of Ackermann’s function (Cormen et al.,
1990). This algorithm visits each node of the species tree
S and in the process calculates M for each internal node of

the gene tree, using a data structure similar to a disjoint-set
forest (Cormen et al., 1990).

Both kinds of algorithm, though asymptotically more ef-
ficient than ours, require relatively complex preprocessing.
We reasoned that since our algorithm has so few steps, we
were likely to have a better constant factor than both. Fur-
thermore, our intuition was that the worst case bounds of
our algorithm were pathological and would never be re-
alized on realistic data sets. Eulenstein comments that his
algorithm has a lower constant factor than Zhang’s. We de-
cided to implement both our algorithm and Eulenstein’s,
and compare their performance on real data.

IMPLEMENTATION
Both algorithms were implemented in Java. The Java
classes are named SDI for ‘Speciation vs Duplication
Inference’ and are part of our FORESTER classes for
working with phylogenetic trees. FORESTER including
SDI is freely available at http://www.genetics.wustl.edu/
eddy/forester/. It should run on every platform with a
Java 1.2 JDK.

A preprocessing step deletes external nodes in S that
have no genes in G, allowing a single trusted species tree
to be used for all gene trees.

All timings reported are the average of three runs on a
single processor 500 MHz Pentium III system running Red
Hat Linux 6.0 and Sun Microsystems’ Java 1.2 SDK for
Linux.

RESULTS
We first timed the two implementations on synthetic data
sets that would exercise the worst-case behavior of our
algorithm. We synthesized gene trees with n genes, for
a range of values of n, where M(g) for every internal
node would map to the root of the corresponding species
tree with n species (e.g. the situations in Figure 3B
and C). Plots of wall clock time versus n are shown in
Figure 4. For a balanced species tree, both algorithms
have running times that scale nearly linearly in tree size
(our O(n log n) is not appreciably different from linear at
first glance), and our algorithm exhibits a lower constant
than our implementation of the Eulenstein algorithm.
For a maximally unbalanced species tree, we confirm
our algorithm worst case O(n2) behavior, but because
of our lower overhead, SDI is still more efficient for
smaller trees. Over about n = 550 genes and species,
our implementation of Eulenstein’s algorithm outperforms
SDI. If only the actual calculation of M(g) is compared
(excluding all preprocessing and initialization steps),
Eulenstein’s algorithm outperforms SDI for n larger than
about 200 taxa (data not shown).

We then tested both implementations on real data to
empirically determine their average-case behavior. We
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Fig. 4. Timing benchmarks on real trees to determine average-case behavior, and synthetic trees that exercise our algorithm’s worst case
behavior. For the synthetic trees, every internal node of the gene tree maps to the root of the corresponding species tree and each gene tree
has the same size as the corresponding species tree. Each synthetic data point is the average of three measurements. Curves were fitted
using GNUPLOT’s nonlinear least squares fitting mechanism (Marquardt–Levenberg algorithm). Real trees are from Pfam alignments and
were created as described in the text. In the case of real trees, the species trees usually have fewer taxa than gene trees (each species may
contain more than one paralogous gene)—hence the smaller times relative to synthetic data tests. Each Pfam data point is the average of
100 measurements.

obtained 2478 multiple sequence alignments from the
‘full’ alignments (as opposed to the smaller ‘seed’ align-
ments) in the protein family database Pfam (release 5.5;
Bateman et al., 2000).

Gene trees were constructed from these alignments as
follows. All sequences not originating from the curated
SWISS-PROT database (Bairoch and Apweiler, 2000) and
not from species in our species tree (see below) were
removed from the alignments. Alignments with fewer than
four or more than 1000 sequences were discarded, leaving
1750 alignments. Columns containing one or more gap
symbols were removed from the alignment if the resulting
alignment after this filtering was at least 100 amino acids
in length. Pairwise distances were calculated based on
the Dayhoff PAM matrix (Dayhoff et al., 1978) using the
program PROTDIST from Felsenstein’s (1993) PHYLIP
package. A neighbor-joining tree (Saitou and Nei, 1987)
was constructed using the program NEIGHBOR from the
PHYLIP package. Roots were placed by the midpoint
rooting method (Swofford et al., 1996).

A single master species tree was compiled manually,
containing 200 of the most commonly encountered species

in Pfam. The topology of this species tree is based on
the taxonomy database at NCBI (http://www.ncbi.nlm.nih.
gov/Taxonomy/tax.html/), the Tree of Life project (Mad-
dison and Maddison, at http://phylogeny.arizona.edu/tree/
phylogeny.html), Barns et al. (1996), and Aguinaldo et al.
(1997). This tree is available at http://www.genetics.wustl.
edu/eddy/forester/.

The individual running times of the SDI algorithm and
of the Eulenstein algorithm for each of these 1750 trees
are shown in Figure 4. These data imply that the average
case behavior of our algorithm on real data sets is
approximately O(n), and its worst case behavior is not
realized.

As an example of the results from such an analysis,
and how they might be useful in sequence annotation, the
gene tree for the fibrinogen beta and gamma chain Pfam
family (Pfam accession number: PF00147) is presented
in Figure 5. The fibrinogen sequence family contains
fibrinogen alpha, beta and gamma chains (sequences
with FIBA, FIBB, FIBG prefixes) which together form
the fibrinogen hexamer (Stryer, 1995). Each chain type
appears on the tree as a paralogous subtree. A special case
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Fig. 5. A gene tree for the fibrinogen beta and gamma chain Pfam
family. Circled internal nodes represent gene duplication events
inferred by SDI. The suffix of each SWISS-PROT sequence name
indicates the species (BOVIN, Bos taurus; CHICK, Gallus gallus;
DROME, Drosophila melanogaster; HUMAN, Homo sapiens; PIG,
Sus scrofa; RAT, Rattus norvegicus; XENLA, Xenopus laevis).
Bootstrap values were calculated from 100 replicates and are shown
as numbers below the corresponding branch. The tree was rooted
by the midpoint rooting method. The figure was produced with
our tree display tool ATV (Zmasek and Eddy, 2001, available at
http://www.genetics.wustl.edu/eddy/atv/).

is FIBH HUMAN (fibrinogen gamma-B chain) which ap-
pears to be the result of alternative splicing of the human
gamma chain gene (Fornace et al., 1984). In addition, the
fibrinogen family also contains various proteins probably
involved in adhesion, which share the fibrinogen-like
domain with the fibrinogen sequences (e.g. Jones et al.,
1988; Baker et al., 1990), such as tenascins (sequences
with TENA prefixes). Interestingly—FIBX MOUSE (also
named FGL2 MOUSE), a mouse enzyme with prothrom-
binase activity (conversion of prothrombin into thrombin)
is similar to fibrinogen beta and gamma chains (Parr et al.,
1995). Thrombin is an enzyme responsible for cleaving
fibrinogen into monomers which in turn polymerize into
fibrin (Stryer, 1995). The node connecting FIBX MOUSE
to the rest of the tree is inferred to be a duplication
event, since the placement of FIBX MOUSE contradicts
the species tree and hence FIBX MOUSE is inferred
to be paralogous to the fibrinogen beta chain subfamily

(FIBB). In contrast, a naive best BLAST analysis of the
FIBX MOUSE sequence could easily have misannotated
it as the mouse fibrinogen beta chain.

DISCUSSION
In this paper we have presented a simple algorithm to infer
gene duplication events on a gene tree by comparing it to
a species tree.

Computer science textbooks often warn that compari-
son of asymptotic worst-case running times may be mis-
leading. Our algorithm is O(n2), yet empirically outper-
forms at least one more complex algorithm with a supe-
rior asymptotic bound close to O(n) (Eulenstein, 1998), at
least in our implementation of the two algorithms. Partly
this is because our algorithm has very few steps, so it has
a low constant. Also, the worst case behavior of our algo-
rithm is only realized in a pathological case: a gene tree
where M(g) for every internal node points to the root of
the species tree, and there are no two genes from the same
species (e.g. the number of species in S is O(n)), and the
species tree is maximally unbalanced. Figure 4 argues that
we do not see such cases in real data. In real data our al-
gorithm is nearly linear time. The Zhang (1997) O(n) al-
gorithm has not been analyzed in this work, but we expect
that there too, the improved asymptotic bound will not be
worth the cost of the extra complexity nor the extra com-
putational overhead. We conclude from our results that we
will use SDI for future work.

Our goal is to use SDI as part of a system for automating
phylogenomics (Eisen, 1998). SDI gives us a clean, simple
computational engine that can become part of that larger
goal, but there are additional difficulties that must be faced
before we put it to practical use. Most importantly, the
algorithm assumes at its peril that the gene tree and species
tree are both properly rooted and biologically correct.

Phylogenetic inference algorithms produce unrooted
gene trees that will have to be rooted before duplication
inference can be performed. Usually trees are rooted using
either a molecular clock assumption or by defining an
outgroup. A molecular clock assumption is generally du-
bious, and will be especially dubious in a sequence family
with different paralogous clades with different functions
that are under differing selective pressures. Defining an
outgroup in a complicated family of paralogous sequences
depends on recognizing the paralogies in the first place,
so cannot be done independently of duplication inference.
Ironically, one plausible approach to root the gene trees
might be to minimize the dissimilarity between the gene
tree and a species tree as described in Eulenstein and
Vingron (1995), Goodman et al. (1979), Guigo et al.
(1996), Mirkin et al. (1995), and Zhang (1997), using a
duplication inference algorithm.

Phylogenetic inference algorithms also rarely produce
completely reliable gene trees. Even a consensus species
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tree based on all available evidence (from paleontological
to molecular) will always have ambiguities. Errors in
either tree will produce spurious inferred duplications.
This is obviously problematic if duplications are to
be used as indicators of potential functional changes.
One way to portray uncertainty in phylogenetic trees
is lack of resolution (i.e. multifurcations). However, the
current algorithms are limited to completely resolved (i.e.
completely binary) gene and species trees. In addition,
the concept of orthology and paralogy is applicable only
to completely resolved gene trees. Instead, we think we
can approach this issue using sampling methods, such as
bootstrap (Mueller and Ayala, 1982; Felsenstein, 1985)
or Markov chain Monte Carlo (Mau et al., 1996), to
integrate orthology assignments over tree space. This
would allow us to calculate a probability, or at least a
bootstrap confidence value, for a particular assertion that
a known sequence is orthologous to the new sequence
being analyzed, and to rank the inferred orthologs by
this confidence. Sampling methods can also help us with
dealing with ambiguities in rooting the trees. Having a fast
algorithm for duplication inference ought to help in any
sampling procedure that explores large numbers of tree
topologies. However, we recognize that the rate limiting
step is more likely to be the tree sampling procedure itself,
rather than the duplication inference procedure.
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