
Demystifying Data Deduplication

Nagapramod Mandagere
University of Minnesota

npramod@cs.umn.edu

Pin Zhou, Mark A Smith, Sandeep
Uttamchandani

IBM Almaden Research Center
{pinzhou,mark1smi,sandeepu}@us.ibm.com

ABSTRACT
Effectiveness and tradeoffs of deduplication technologies are
not well understood – vendors tout Deduplication as a “sil-
ver bullet”that can help any enterprise optimize its deployed
storage capacity. This paper aims to provide a comprehen-
sive taxonomy and experimental evaluation using real-world
data. While the rate of change of data on a day-to-day ba-
sis has the greatest influence on the duplication in backup
data, we investigate the duplication inherent in this data,
independent of rate of change of data or backup schedule
or backup algorithm used. Our experimental results show
that between different deduplication techniques the space
savings varies by about 30%, the CPU usage differs by al-
most 6 times and the time to reconstruct a deduplicated file
can vary by more than 15 times.

Categories and Subject Descriptors
A.1 [Introductory and Survey]; D.4.8 [Performance]:
Operational analysis

General Terms
Design, Performance

Keywords
deduplication, compression

1. INTRODUCTION
Data deduplication is becoming increasingly popular as

a technology that helps enterprises reduce the data foot-
print by eliminating redundant copies of data – copies that
are created during complete system backups, e-mail attach-
ments distruted to multiple users,shared documents, music
and projects,etc. Data compression tools such as gzip reduce
intra-file data redundancy, while deduplication reduces both
intra-file and inter-file data redundancy. We refer to the re-
duction in data footprint size due to deduplication the fold
factor.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Middleware ’08 Companion December 1-5,’08 Leuven, Belgium
Copyright 2008 ACM 978-1-60558-369-3/08/12 ...$5.00.

The effectiveness of data deduplication depends on sev-
eral factors and varies widely across different deduplication
algorithms. Deduplication is a data intesive application and
comes at a cost of higher resource overheads on the exist-
ing storage infrastructure, increased backup time window,
and higher latency to access deduplicated data due to re-
construction overhead. Given the plethora of deduplication
offerings from various vendors, administrators and small en-
terprise users are finding it increasingly difficult to select a
solution that works best for their enterprise: a) What are
the typical sources of duplication and which deduplication
algorithm is the most suitable?; b) Should deduplication be
done on the client or on the server?; c) What is a reasonable
reconstruction time? There is no single answer for these
questions – the fact is it ”depends.”

The goal of this paper is to characterize the taxonomy
of available deduplication technologies and experimentally
evaluate their properties on a real dataset. To ensure an
”apples-to-apples” comparison of fold factors, resource uti-
lization, ingestion rates, and reconstruction time of multiple
technologies, we implemented a deduplication middleware
appliance that was deployed on enterprise-class servers and
storage systems. The middleware allows plug-in for vari-
ous deduplication algorithms and helps characterize popu-
lar deduplication architectures. The experimental evalua-
tion was using data from a real-world backup server used by
enterprise users to backup official e-mails and other business-
critical data.

The key contributions of this paper are - Developing a
taxonomy to characterize and classify the increasing num-
ber of available deduplication technologies, and Experi-
mental evaluation of fold factor, resource requirements,
reconstruction time of deduplication algorithms on a real
world dataset. This paper complements existing survey and
evaluation of deduplication techniques and systems [7, 6, 4,
8, 3] by experimenting on large representative dataset, eval-
uating not only the space saving but also the deduplication
performance, resource consumption, metadata overhead and
reconstruction bandwidth, and examining the duplication
inherent in backup data independent of backup algorithm
or schedule.

2. DEDUPLICATION TAXONOMY
Deduplication solutions differ along three key dimensions

(as shown in figure 1), namely - Placement of the dedupli-
cation functionality, Timing of deduplication w.r.t. to the
foreground IO operations and Algorithm used to find and
reduce redundancies in the data

12

CPU Utilization
Network Utilization
IO Bandwidth Utilization

Fold Factor − SpaceSaved
Reconstruction Time (RTO)
Deduplication Time(Backup Window)

Placement

Timing

Algor ithm

Implications

ResourceConsumption

Per formance

DeltaEncoding(DE)

WholeFileHashing(WFH)

Fixed Block Hashing(FBH)

VariableBlock Hashing(VBH)

Servers/Backup Clients

Deduplication Appliances

StorageArrays/VTLs

Synchronous
or

Asynchronous
or

In-band Out-of-band

Figure 1: Deduplication Design Space

2.1 Placement
Data deduplication can be done on the client, storage ar-

ray/VTL or on an appliance.
Client Based
Deduplication in the client follows a client-server approach
wherein a deduplication client communicates with its server
counterpart installed on either a deduplication appliance or
the Storage Array itself. This type of deduplication is of-
ten referred to as transmission deduplication where in, the
deduplication client processes the data, extracts deduplica-
tion metadata and exchanges it with its server counterpart.
The server counterpart would use this metadata along with
its own bookkeeping data to determine if duplication exists
and communicates back the corresponding information to
the client. The deduplication client would transmit only the
unique data over fibre channel or the IP network.

Deduplication at the Client provides huge savings in net-
work bandwidth. However, these savings come at a cost.
Firstly, client side CPU and IO resources are used for de-
tection of duplicates. Secondly, it has a wide range of se-
curity implications, since any client can query the Storage
Array with deduplication metadata, one could attempt to re-
verse engineer the system to determine the contents stored
by other backup clients on the same storage array. Lastly,
client-side deduplication may affect the choice of deduplica-
tion timing at the server.

Deduplication Appliance
A deduplication appliance is a special-purpose system that
implements and performs deduplication. Typical deduplica-
tion appliances operate either in-band or out-of-band, con-
nected to both the clients and the Storage Arrays. In-band
deduplication appliances examine all of the incoming data
as it arrives to find duplication before writing data to the
storage array, whereas out-of-band appliances perform the
deduplication functionality after the data has been written
to disk. One main concern with in-band appliances is that
the appliance could become a bottleneck in the IO path due
to the extra processing required by the system before writ-
ing the data to disk.

Storage Arrays/VTL
Disk Array controllers and Virtual Tape Library controllers
provide a very good platform for performing deduplication.
Modern disk array controllers often have large computa-
tional resources and their proximity to data makes them
a very interesting place to perform deduplication. VTLs

though primarily meant for backup/offline operation typi-
cally have powerful controllers too. However, placing dedu-
plication functionality within a storage array rules out the
option of using any type of content-aware deduplication al-
gorithms that operate by understanding the details of the
data; this is because existing Storage Arrays do not have the
capability to understand file system metadata, thereby lim-
iting the choice of deduplication algorithms to block-based.

In summary, the choice of placement in addition
to affecting the resource utilization can potentially
limit the timing/deduplication algorithm selection.

2.2 Timing
Deduplication can be performed as Synchronous/In-Band

or as Asynchronous/Out-of-Band operation.
Synchronous/In-Band Deduplication involves perform-
ing the deduplication operation as part of regular data re-
quests. Every write request to the storage system involves
an attempt to perform deduplication (finding the match, if
any, and then updating metadata to reflect the deduplica-
tion operation) before actually writing data to disk. In-band
deduplication is amenable to client-side placement because
the data store metadata synchronously reflects its contents
and can be queried immediately by clients, eliminating du-
plicate network traffic. Additionally, it facilitates thin pro-
visioning of storage since no staging of data is required. In-
band deduplication can add a significant amount of latency
to the system, e.g., in a backup environment, performing
in-band deduplication would mean increasing the size of the
backup window.

Asynchronous/Out-of-Band Deduplication involves per-
forming deduplication at regular intervals or when the sys-
tem reaches a high-water mark.It can be desirable in systems
where the ingestion speed of data is the primary consider-
ation. Main drawback is that it results in a large num-
ber of additional IO operations solely for the purpose of
deduplication – data must be re-read from disk, and dupli-
cate bytes must be reclaimed, often resulting in additional
write IOs. Though out-of-band deduplication could be intel-
ligently scheduled to minimize interference with regular IO
operations, it can have a significant impact on power man-
agement schemes and load balancing windows. Out-of-band
deduplication limits the option of placement – deduplication
at the client is less beneficial due to lack of up-to-date dedu-
plication metadata during run-time. Hence, many of the
benefits (like reduction in network bandwidth utilized for
deduplication) that one could achieve by placing deduplica-
tion functionality at the client is lost. Finally, out-of-band
deduplication necessitates provisioning for a larger footprint
since deduplication is performed at a later point in time,
space to save the complete dataset is still required for stag-
ing purposes until deduplication can be performed.

In summary, choice of timing may be restricted by
placement, but the main driver is the performance
requirements or Service Level Objectives (SLOs) of
the storage subsystem.

2.3 Deduplication Algorithm
Based on the granularity of deduplication, algorithms are

categorized into three main categories: Whole File Hashing,
Sub File Hashing and Delta Encoding.

13

Whole File Hashing (WFH): A SHA1 and/or MD5 hash
function is applied to the content of each file to obtain their
hash signatures. Files with matching signatures are collected
and optionally a byte-to-byte comparison of them is per-
formed as a safeguard from hash collisions.

Sub File/Chunk Hashing: schemes use blocks/chunks
as the granularity. Based on the strategy used for this divi-
sion of files into blocks, two different approaches have been
developed, namely -
Fixed Block Hashing (FBH): Every file is divided into
fixed-sized blocks starting from the beginning of the file. A
hash function like SHA1 or MD5 is used to compute the
signature of each chunk. A hash table is used to find exact
match chunks and then optionally a byte-to-byte compare
is used as safeguard against hash collisions.
Variable Block Hashing (VBH): uses Rabin Fingerprit-
ing [5] [1], a sliding window rolling hash based technique to
subdivide byte-streams into chunks with a high probability
of matching other chunks generated likewise. If a signature
of the chuck/block matches one of the pre-computed or pre-
specified delimiters, the algorithm designates the end of this
window as a chunk boundary. Once the boundary has been
identified, all bytes starting from the previous known chunk
boundary to the end of the current window is designated a
chunk. A hash of this new chunk is computed and compared
against the signatures of all pre-existing chunks in the sys-
tem. This approach has been proved to be very successful in
identifying similar chunks irrespective of their offsets within
their corresponding files [6]. In practice, this method makes
use of four tuning parameters, namely - the minimum chunk
size, the maximum chunk size, the average chunk size and
the window size.

Delta Encoding/Compression (DE): Delta encoding [2]
is a mechanism used to generate a delta (usually called patch
file) between two files. Given a reference file and a new file,
delta encoding produces a delta or diff between the two.
Just like inter-file compression techniques, this method sim-
ply uses copy/insert commands and outputs a patch file. A
stream matching algorithm is used to locate matching off-
sets in the source and target versions, emitting a sequence
of copy instructions for each matching range and insert in-
structions to cover the unmatched regions. For an incoming
file to a system using DE, the most important implementa-
tion detail is how to select the file against which to produce
the delta. Fingerprint matching can be used for detection
of resemblance between a given file and a set of files already
in the system.

Algorithmic choices have several implications. Fold Fac-
tor to a large extent depends on the dataset itself. In some
instances, the difference/improvement between algorithms
might be minimal. However, in general, VBH-based prod-
ucts are known to provide the best fold factor. The selection
of parameters for VBH has been found to be a tricky issue.
One must balance the metadata overhead with the duplica-
tion detection in order to achieve best fold factors.

Reconstruction time is an important metric and mostly
dependent on the deduplication algorithm and the degree of
locality of the constituent chunks comprising the filesystem.
Most of the algorithms that work at the granularity of fixed-
or variable-sized logical blocks have a high impact on recon-

struction time. This impact on reconstruction time is more
evident in systems that work on top of file systems. Typi-
cally these algorithms store each of these individual blocks
as separate files. Hence, retrieval of a single deduplicated
file could potentially result in retrieval of all its constituent
blocks or files leading to long reconstruction times. If block
sizes chosen are very small compared to size of the original
file, a single file reconstruction could lead to reading a large
number of constituent files.

In the case of in-band deduplication, the rate of dedu-
plication is very important as it directly impacts the data
ingestion rate. Deduplication times are very closely related
to choice of deduplication algorithm. If using VBH, the
data must be both fingerprinted and hashed. With all al-
gorithms, a lookup in a large table of data identifiers must
occur. FBH and WFH algorithms both only require hashing
of the data to uniquely identify it, and would have the least
impact on data ingestion rates due to deduplication time.
Out-of-band deduplication times are generally longer than
in-band because of the additional IO required to perform
the deduplication. Whereas in-band systems operate on the
data while still in memory and before it is written to disk,
out-of-band systems must re-read and reorganize the data
to reclaim space during the deduplication process.

Resource Consumption, which is dependent on the
computational complexity of these algorithms, varies widely.
In general, algorithms that work at a larger granularity con-
sume less resources at the expense of fold factor. In
most cases client CPU resources are either limited or ex-
pensive, hence algorithm choices might be restricted. In
some cases, network bandwidth might be considered more
expensive (typically if geographically distributed). In sum-
mary, resource consumption could play a very critical role
in selection of the deduplication technology.

In summary, the choice of Deduplication Algorithm
is driven by folding factor, expected reconstruction
time, desired impact on ingestion rate, network speed,
and availibility of CPU cycles. Table 1 summarizes the
popular deduplication products based on the above taxon-
omy.

3. EVALUATION METHODOLOGY

3.1 System Configuration
In our test bed, the Deduplication Appliance performs

out-of-band deduplication. It is a 2-way 2.4GHz Intel Pen-
tium Xeon server with 4GBs of DDR2 RAM with a SAN
attached volume hosted by an IBM DX4000 series Disk Ar-
ray with 20 10K RPM SCSI disks configured as a RAID 0
volume. Prior to the experimental runs, by trial and error
we found that using 32 threads achieves the best utilization
of compute and storage resources for our setup. Hence, we
configure the system to use 32 instances of the Deduplication
Process for the this comparison study.

Experimental results that follow are for deduplication of
same dataset/workload with variation of different dedupli-
cation algorithms and their tuning parameters.

3.2 Dataset
The dataset used in our evaluations consists of base Win-

dows backups of 16 users totaling upto 450 GBs and 2,074,810
files. No incremental backups are included in this analysis
because we want to study the duplication inherent in the

14

Placement
Backup Clients Deduplication Storage

Products Appliances Array/VTL Timing Algorithm
Data Domain X VTL In-Band VBH

Diligent X VTL In-Band VBH
Avamar(EMC) X X In-Band VBH

FalconStor VTL Out-of-Band Sub File Hashing
Network Appliances Storage Array Out-of-Band FBH

Sepaton VTL Out-of-Band Content-aware
Quantum X VTL Unknown VBH

ExaGrid Systems X Out-of-Band Content-aware
Symantec PureDisk X X In-Band Unknown

Table 1: Classification of Deduplication Products.

File Total % of Avg. File File
Type Size(GB) Dataset Size(KB) Count
AVI 83.3 20.1 131515.4 664
DLL 35.0 8.4 276.7 132492
EXE 24.6 5.9 602.1 42989
NSF 20.7 5.0 46228.7 469
MOV 20.5 4.9 67283.5 319
JAR 13.7 3.3 409.8 35162
MP3 12.8 3.1 4165.7 3231

NOEXT* 11.1 2.7 43.6 267121
ZIP 10.2 2.5 1111.4 9618

RDG 7.0 1.7 192061.7 45

Table 2: Statistics of the Top Ten File Types

backup data, not due to multiple backups of the same or sim-
ilar data. Very high aggregate fold factors can be achieved
by performing daily full backups, but we focus on the du-
plication in the dataset itself to eliminate the influence of
backup policies and schedules on the results.

This dataset represents the backup and archival data of
employees in the enterprise environment. Figure 2 shows
the cumulative distribution of the file sizes for this dataset.
Table 2 provides the information on the file types whose
total sizes are among the top ten in the dataset.

 0

 0.2

 0.4

 0.6

 0.8

 1

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 16
M

32
M

64
M

12
8M

25
6M

51
2M 1G 2G 4G

%
 o

f f
ile

s
be

lo
w

 F
ile

 S
iz

e

File Size

File Size Distribution

Figure 2: Cummulative Distribution of File Sizes

4. PERFORMANCE EVALUATION
Choice of Deduplication Algorithm typically dictates Fold

Factor, Reconstruction Bandwidth, Metadata Overhead, and
Resource Usage. Typical deduplication systems apply the
same deduplication algorithm across all data types. In this
section we apply different deduplicaiton alogorithms, i.e.,
VBH,FBH,WFH to the entire dataset to better understand
the differences between them. Table 3 and Figure 3 show
the comparison results for different algorithms and param-
eters.The minimum block size(min block size) is set to 1

2
∗

avg block size and maximum block size (max block size)
is set to to 2 ∗ avg block size. We use fixed window size
(64 Bytes) for different VBH algorithms as our prior exper-
iments showed that the window size has a negligible effect
on the deduplication behavior.

4.1 Fold Factor Comparison

Algorithm Fold Factor Metadata Reconstruction
Overhead(MBs) Bandwidth(MBps)

WFH 1.310 307.64 18.873

FBH(16KB) 1.525 2656.26 4.768
VBH(16KB) 1.607 2248.71 7.002

FBH(32KB) 1.516 1474.3 14.556
VBH(32KB) 1.583 1302.59 12.777

FBH(64KB) 1.508 884.23 22.292
VBH(64KB) 1.565 818.52 15.909

FBH(128KB) 1.501 590.84 24.4
VBH(128KB) 1.547 581.26 15.711

FBH(256KB) 1.494 445.63 20.577
VBH(256KB) 1.529 447.51 15.363

FBH(512KB) 1.486 374.20 17.925
VBH(512KB) 1.513 379.99 17.748

Table 3: Deduplication Comparison

Clearly for fold factor, VBH algorithms outperform both
FBH and WFH over all block sizes considered. Within VBH,
smaller block sizes yield better fold factors. Both of the
above observations are consistent with the earlier discussion
on the working of Variable Block Hashing schemes. Even
in case of FBH, smaller block sizes yield higher fold fac-
tors. In general, for sub-file chunking algorithms, the smaller
the block size, the higher the probability of finding identical
chunks.

The difference in fold factor between comparable instances
(similar block size parameters) of VBH and FBH decreases
as block size increases. At their optimal operating points -
VBH(16K) and FBH(16K) - space reduction achieved using
VBH is about 3.9% higher than that achieved using FBH.
At the maximum tested block size of 512KB, this difference
narrows down to about 1.2%. Possible reasons for this be-
havior are - Firstly, by using larger blocks the probability
that a single different byte between blocks increases, and
because this difference is contained in a larger block, the
entire block including the identical portions of the block are
stored independently and Secondly, the number of files that
are contained in single such blocks is high, as illustrated in
Figure 2. A point worth noting is that even with simple
WFH-based schemes, an appreciable amount of space re-
duction is achievable. In our dataset use of WFH amounts
to a space reduction of about 23%.

As we can see, deduplication inherent in backup data is
considerable (as high as 1.6 of fold factor with VBH(16K)),
but should not be confused with the large fold factors asso-
ciated with multi-day cumulative deduplication. Fold factors
of 1.5 to 2.0 seem reasonable to expect out of a single day’s
backup data. Achieving much larger fold factors in the range
of 20 or 30 requires multi-day repeated backups and is heavily
dependent upon the backup algorithm and schedule.

4.2 Reconstruction Bandwidth
Column 3 in Table 3 shows the comparison of read or

reconstruction bandwidth for different algorithms. Read
speeds on deduplicated datasets are a direct function of the

15

block size parameter of deduplication algorithms. Our pro-
totype system currently does not implement any optimiza-
tions in read or reconstruction path between the appliance
and the underlying data store. In such a system, using ex-
periments with whole file hashing as an approximate baseline
and seeing the relative differences of it yields generalizable
results. For WFH, the read bandwidth was about 19MBps.
Compared to WFH, the sub-file chunking based schemes are
able to provide far less read throughput. In addition, this
throughput reduces with the block size parameter. This is
because each extent is stored as a separate file due to the
fact that typical deduplication schemes work on top of file
systems. Reconstructing any original file therefore involves
reading multiple files. For deduplication systems that work
on top of standard file systems, controlling on disk layout of
these constituent files is possible by implementing contigu-
ous segment containers. However, this technique is limited
by the fragmentation inherent in deduplicated data. As a
result, reconstructing a single file involves multiple random
reads (as many as one per constituent extent) resulting in
decreased read throughputs.

Contrasting this reconstruction performance with the fold
factor analysis given before yields a valuable insight: trying
to achieve best space efficiency by choosing minimal block
sizes has an adverse impact on reconstruction time. Fur-
ther, for many datatypes, fold factors do not improve much
by using smaller block sizes. In such cases, blindly using
smaller block sizes will yield very little benefit in terms of
space, while leading to further degradation in reconstruction
time.

4.3 Metadata Overhead
As mentioned in the taxonomy section, the block sizes

used for deduplication dictate the amount of extra meta-
data that one needs to maintain. Metadata here includes
the bookkeeping structure that stores hash signatures of
unique blocks and the object to extent(s) mapping informa-
tion. The exact size of these types of information can vary
across different implementations. Column 2 in table 3 quan-
tifies the metadata overhead in our implementation which
tries to optimize such overhead. Clearly, the difference in
metadata sizes between the sub-file chunking algorithms is
minimal. However, the actual size of the metadata is sig-
nificant. This is because because if the metadata cannot
be stored completely in memory, then the part of meta-
data stored on disk will cause disk reads for hash lookups.
For instance, in our implementation the metadata size is
about 2.2GB for running FBH(16K) on our archive/backup
dataset leading to virtual paging. This causes an abnormaly
long deduplication time for FBH(16K) as shown in Table 3.
Recent work has increased the in-memory hit-rate of these
deduplication hash tables to as much as 99% by leverag-
ing Bloom Filters and locality-aware caching, reducing this
requirement[8]. However, such approaches have only been
proven to work in certain backup domains and hence the
initial planning or provisioning of deduplication hardware
still needs to account for metadata needs as the fragmenta-
tion of the system increases, and the locality-aware caching
becomes less effective.

Therefore, compared to the size of the dataset, deduplica-
tion metadata is small, but significant in terms of system
performance impact.

4.4 Resource Impact
Given that deduplication is typically a bulk data manip-

ulation operation, an understanding of the necessary re-
sources required to achieve or support this operation is very
important in making system-wide provisioning decisions. As
highlighted in Section 2, resource usage is dependent not just
on the algorithm used, but also the placement and timing of
deduplication. Figure 3 shows a comparison of CPU usage
characteristics for the three algorithms and their variations.
Figures 3(a) and 3(b) show the utilization of the CPU by
the deduplication process and the time taken for dedupli-
cation process to complete respectively. As the block size
decreases, the number of hash lookups and hash updates
increase, consequently consuming more CPU cycles. In ad-
dition, the rate of decrease of computation time of SHA1
hash operation does not decrease linearly with block size.
Hence in general, one would expect higher CPU utilization
with smaller block sizes for both VBH and FBH. However,
our results show that CPU utilization for a 16KB block size
is significantly lower than any block size greater than 16KB.
On further investigation we found two main reasons for this
behavior, - Firstly, we found that with a 16KB block size, the
available memory during the deduplication process dropped
down to almost zero. As a result of this unavailability of
physical memory, our bookkeeping data structures (2.7GB)
used by the deduplication process could no longer be main-
tained in the physical memory in its entirety resulting in
paging to disk. Hence, hash table lookups slow down by an
order of magnitude. Secondly, with a 16KB blocksize, the
filesystem makes IO requests of a size far smaller than the
Logical Block Size on the Disk Array resulting in inefficient
access. In our system, the Logical Block Size was config-
ured as 64KB. The CPU utilization for block size other than
16KB is greatly dependent on the IO subsystem. Since the
offline deduplication process performs random IO on the disk
subsystem, even with a large number of concurrent dedu-
plication threads, we found that the CPU utilization was
affected by the IO bottleneck.

Both the CPU Utilization and Deduplication Times are
impacted by certain hidden system factors due to which gen-
eral conclusions should not and cannot be drawn from them.
For instance, CPU and IO bottlenecks vary widely across
systems. Hence, both these metrics need to be considered
together to understand and draw generalizations about the
CPU characteristics of different algorithms. This leads us
to a derived metric - CPU Cycles consumed - a product of
the CPU utilization and the total duration for which the
CPU was used. Figure 3(c) shows the variation of CPU
Cycles consumed with with different algorithms. This met-
ric clearly shows the difference in CPU usage of these algo-
rithms. VBH and its variations consume a large number of
CPU cycles while finding the most duplicates. For instance,
at a block size of 16KB, VBH consumes about 230% more
CPU cycles than a comparable instance of FBH. VBH is 3.3
times as CPU intensive as FBH given that IO subsystem is
not a bottleneck. An interesting point to note here is that
though CPU cycles consumed by both WFH and FBH with
block size 512KB are almost equal, FBH delivers a fold fac-
tor of 1.486 as against 1.31 for WFH. In essence, with similar
CPU consumption, FBH can potentially deliver better space
savings.

Compute resources consumed by deduplication processes
could potentially make or break placement decisions. For in-

16

 0
 10
 20
 30
 40
 50
 60
 70
 80

16 32 64 128 256 512 WF

%
 C

P
U

 U
ti

li
z
a
ti

o
n

Avg. Block Size (KBs)

Comparison of CPU Usage

(a) CPU Utilization

 0
 10
 20
 30
 40
 50
 60

16 32 64 128 256 512 WFD
e
d

u
p

li
c
a
ti

o
n

 T
im

e
(h

rs
)

Avg. Block Size (KBs)

Comparison of Deduplication Time

VSH FSH WFH

(b) Deduplication Time

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000

16 32 64 128 256 512 WF

C
P

U
 C

y
c
le

s
(G

)

Avg. Block Size (KBs)

Comparison of CPU Cycles Consumed

(c) CPU Cycles

Figure 3: Comparison of CPU Consumptions

stance, compute resources on servers in general are far more
expensive than on dedicated appliances. Further, usage of
CPU is interleaved in manners in which it could potentially
have a drastic impact on performance of other applications.
Hence, the tradeoff between deduplication performance and
resource usage needs to be considered on a case by case basis
before making deployment decisions. For instance, in de-
ployments where a network bandwidth between servers and
storage is expensive, and CPU cycles on servers are cheap,
the best choice might be VSH with smallest block size.

5. DISCUSSION & LESSONS LEARNED
Based on extensive review of various deduplication tech-

nologies/vendor offerings and evaluation of a prototype dedu-
plication system, in this section, we coalesce our findings
into practical recommendations for storage systems admin-
istrators. When contemplating the deployment of a data
deduplication system into their infrastructure, Administra-
tors/ Decision makers need to keep two primary factors in
mind - Nature/Intent of Data Access and Resource
Availibility and Tolerance of the system.

Typical system usage varies across Enterprise. If a stor-
age system is used primarily to serve database accesses in an
online manner and is not asked to store backups of the same
database, deduplication may not be warranted at all. On
the other hand, if a storage system houses multiple virtual
machines for different users, a deduplication system should
provide significant storage savings. In cases where the sys-
tem is asked to be a backup target for data, be it database
data or otherwise, multiple backups of the same or similar
data will almost always yield impressive deduplication rates.

Based on algorithms used for fingerprinting and their gran-
ularity of comparison, resource usage of deduplication pro-
cess and its consequent impact on rest of the system varies.
If storage efficiency is the primary concern, a variable-block
deduplication scheme at the expense on large amount of
CPU and IO resource usage. IO performance is paramount
or CPU cycles are limited and the tolerance of the rest of the
system w.r.to resource usage is low, a whole-file scheme or
a large fixed-block scheme can provide a significant level of
storage efficiency with very little resource impact to the sys-
tem. In cases where network bandwidth is limited, careful
tradeoffs between data transmission and client CPU usage
need to be evaluated.

The order of importance of these factors varies across En-
terprises and often a weighted combination needs to be con-
sidered and tradeoffs have to be evaluated before making the
decision.

6. CONCLUSION AND FUTURE WORK
Data deduplication is a promising middleware appliance

being increasingly adopted in enterprise storage environ-
ments. Better fold factors typically comes at the expense
of increased resource overheads, but the converse is not al-
ways true. The experimental evaluation results and lessons
described in this paper aim to demystify the available dedu-
plication techniques by comparing them using our home-
grown deduplication appliance prototype.

As ongoing and future work, we are exploring architec-
tures that automatically and transparently adapt the dedu-
plication algorithm for different data types as well as the
varying CPU, network and storage bandwidth availability
of the enterprise.

7. REFERENCES
[1] A. Z. Broder. Identifying and filtering near duplicate

documents. In Combinatorial Pattern Matching: 11th
Annual Symposium, 2000.

[2] J. J. Hunt, K.-P. Vo, and W. F. Tichy. An empirical
study of delta algorithms. In ICSE ’96: Proceedings of
the SCM-6 Workshop on System Configuration
Management, pages 49–66, London, UK, 1996.
Springer-Verlag.

[3] P. Kulkarni, F. Douglis, J. LaVoie, and J. M. Tracey.
Redundancy elimination within large collections of files.
In ATEC ’04: Proceedings of the annual conference on
USENIX Annual Technical Conference, pages 5–5,
Berkeley, CA, USA, 2004. USENIX Association.

[4] C. Policroniades and I. Pratt. Alternatives for detecting
redundancy in storage systems data. In USENIX
Annual Technical Conference, 2004.

[5] M. O. Rabin. Fingerprinting by random polynomials. In
Center for Research in Computing Technology, Harvard
University. Tech Report TRCSE- 03-01, 2006, 1981.

[6] L. You and C.Karamanolis. Evaluation of efficient
archival storage techniques. In 21st IEEE/12th NASA
Goddard Conference on Mass Storage systems and
Technologies, 2004.

[7] L. You, K. Pollack, and D. Long. Deep store: An
archival storage system architecture. In 21st
International Conference on Data Engineering, 2005.

[8] B. Zhu, K. Li, and H. Patterson. Avoiding the disk
bottleneck in the data domain deduplication file
system. In FAST, 2008.

17

