
MISSIVE
Programming Environments

Computer Science 233, Fall 2010
Steven P. Reiss

1.0 Overview

The goal of this course this semester is to understand the problems inherent in providing next-
generation programming tools as part of an integrated development environment or a program-
ming environment (I’ll use these terms interchangably.)

To achieve this goal we are going to start by considering the purpose of a programming environ-
ment, the problems of today’s environments, and what an ideal environment should do. Then we
will consider different areas in which programming tools and environments can be helpful. For
each of these areas we will look at the state of the art and what can and should be done.

2.0 Course Mechanics

The course will be broken down by topic. After a few initial classes where we will attempt to set
the framework for further discussions, we will move to individual topics that are of interest to the
students in the class. For each topic, we will consider the state of the art in terms of what can be
done, what tools currently do, and how these tools are integrated into current environments.

We will spend two to three classes on each topic. This will consist of a presentation of two or
more related papers. The presentations should provide an overview of the topic and then describe
the current state of the art. Following these presentations we will have a class discussion of what
should or could be done related to this topic as part of an integrated development environment.
This discussion should cover the strengths and weaknesses of the presented papers, other
approaches that have been taken or that could be taken, and user experience with the tools.

Nominally, each student will be in charge of a topic and hence a week’s worth of class. However,
students are encouraged to work in teams so that a team is responsible for two separate topics and
the load is split accordingly. Being in charge of a topic will include giving two interactive talks
and leading the follow-up discussion. It also means assigning a paper that may be one of the
papers being presented but doesn’t have to be. For example, the assigned paper might be overview
of the problem or that plus an earlier solution — something that would provide a lead-in to the
presented papers. Students who are not doing the presentation are responsible for reading this
paper, asking questions, and generally interacting with the presentation. This means that the pre-
senters can assume that the students have read (and possibly even understood) the assigned paper.

In addition, those taking the course for credit are expected to produce a prototype software tool
that addresses one of the topics. This can be done either as a standalone tool, as an Eclipse plug-in
or RCP, or as a Code Bubbles plug-in. Students will be expected to do two formal presentations
on the project; the first, about a third of the way through the course, will be an initial design pre-
sentation where the student will describe what they propose and will solicit feedback from the rest
of the class. The second presentation will be a final presentation at the end of the course showing
the tool in action.
MISSIVE August 26, 2010

3.0 Possible Topics

(These are given in no particular order).

Collaboration
More and more software is being developed by teams of programmers, teams
that are often globally distributed. How can and should environments support
this.

Papers

Jazzing up Eclipse with Collaborative Tools (Cheng, Hupfer, Ross, Patterson)

How a good software practice thwarts collaboration: the multiple roles of APIs in software
development (de Souze, Redmiles, Cheng, Millen, Patterson)

Configuration management
Configuration management has not progressed that much since SCCS in the 70s.
RCS, CVS, SVN, git, etc. are all minor improvements (or are they). Make and
ant aren’t much better. What should be done here?

Papers

Operation-based conflict detection and resolution (Koegel, Helming, Seyboth)

Safe-commit analysis to facilitate team software development (Wloka, Ryder, Tip, Ren)

Debugging
Debugging technology is rooted in the 60’s with minor enhancements for han-
dling threads and some tools for memory debugging. What should debugging
actually look and feel like. What would be helpful.

Papers

Debugging reinvented: asking and answering why and why not questions about program
behavior (Ko, Myers)

Selective capture and replay of program executions (Orso, Kennedy)

Isolating cause-effect chains from computer programs (Zeller)

A dataflow language for scriptable debugging (Marceau, Cooper, Krishnamurthi, Reiss)

Design and Model-Driven Development
There is a movement to use UML as a high-level language for programming by
having the system generate code from the UML model and having programming
be done by refining the model and regenerating code. Is this a viable option? Is
UML, which is widely hated by programmers, a suitable representation? Is any-
thing better.

Papers

Model-driven development (Mellor, Clark, Futagami)

User Interface Building
One of the more difficult aspects of writing code today involves designing and
implementing user interfaces. Some programming environments provide tools to
help the programmer do this, but these are generally difficult to use and don’t
MISSIVE August 26, 2010

handle particularly well the cases where the user interface depends on the state of
the program. What should user interface tools look like?

Papers

Building user interfaces by direct manipulation (Cardelli)

Authoring sensor-based interactions by demonstration with direct manipulation and pat-
tern recognition (Hartmann, Abdulla, Mittal, Klemmer)

The state of the art in automating usability evaluation of user interface (Ivory, Hearst)

Automatic generation of personalizable user interfaces with Supple (Gajos, Weld, Wob-
brock)

Testing
Agile development has spurred an interest in testing, although testing is a long-
standing topic of interest in program development. Testing raises several issues
that are relevant to programming environments: how to generate test cases, how
and when to run test cases, and how to interpret the results of test cases.

Papers

Continuous testing in Eclipse (Saff, Ernst)

Visualization of test information to assist fault localization (Jones, Harrold, Stasko)

On test suite composition and cost-effective regression testing (Rothermel, Elbaum, Mali-
shevsky, Kallakuri, Qui)

Test generation through programming in UDITA (Gligoric, Gvero, Jagannath, Khurshid,
Kuncak, Marinov)

Random test data generation for Java classes annotated with JML specifications (Cheon,
Rubio-Medrano)

Tool-assisted unit-test generation and selection based on operation abstractions (Xie, Not-
kin)

Scripting Languages
Most programming environments are designed to handle traditional programs
with some sort of write-compile-run cycle. What is or should be different in deal-
ing with scripting languages such as Scheme, MatLab, Python, etc.

Papers

DrScheme: A Programming Environment for Scheme (Findler, Clements, Flanagan, Flatt,
Krishnamurthi, Steckler, Felleisen)

Web Applications
More programs today are being written as web applications meaning that they
consist of different pieces, often written in different languages, and designed to
be run in different environments (e.g. web browser, tomcat, web server, ...). What
can or should a programming environment do to simplify and support the devel-
opment of such applications.

Papers

TBD
MISSIVE August 26, 2010

Code Search
There are over 1 billion lines of code available in open-source repositories today.
Given this, it seems that almost anytime a programmer wants to write some code,
that code (or something like it) has probably already been written by someone
else. How can a programming environment help locate and adapt such code to let
programmers avoid duplicating other’s efforts.

Papers

Semantics-based code search (Reiss)

Lowering the barrier to reuse through test-driven search (Janjic, Stoll, Bostan, Atkinson)

Static Analysis
One of the major improvements in programming tools over the last decade has
been the advent of static analyzers that can find real or potential bugs without
having to execute the program. The wide range and applicability of these tools is
impressive and is growing.

Papers

ESC/Java2: uniting ESC/Java and JML (Cok, Kiniry)

The spec# programming language: an overview (Barnett, Leino, Schulte)

Semantic essence of AsmL (Gurivich, Rossman, Shulte)

Alloy: a lightweight object modeling notation (Jackson)

Model checking Java programs using Java pathfinder (Havelund, Pressburger)

An efficient inclusion-based points-to analysis for strictly typed languages (Whaley, Lam)

A practical flow-sensitive and context-sensitive C and C++ memory leak detector (Heine,
Lam)

Dynamic Analysis
Static analysis is limited in that most interesting problems are unsolvable or at
best exponential. A viable alternative is to do some sort of dynamic analysis
where the program is checked as it is run. Dynamic analysis can be used to study
very complex systems and to look at issues beyond simple correctness or bugs
such as performance issues.

Papers

Applying “design by contract” (Meyer)

The paradyn parallel performance measurement tools (Miller, Callaghan, et al.)

X-Trace: a pervasive network tracing framework (Fonseca, Porter, Katz, Shenker, Stoica)

Dynamic instrumentation of production systems (Cantrill, Shapiro, Leventhal)

The Daikon system for dynamic detection of likely invariants (Ernst, Perkins, et al)

Teaching Environments
Most programming environments are designed to handle large systems written
by sophisticated programmers. These environments are often much too complex
to be used effectively by students in introductory programming courses or by stu-
MISSIVE August 26, 2010

dents learning a new language. A teaching environment might provide students
with better errors, additional help, intelligent completions, etc.

Papers

Software visualization in teaching at Brown University (Bazik, Tamassia, Reiss, van Dam)

Working sets
Programmers typically work on one particular task at a time. This task is often
cross-cutting, involving multiple functions and fields spread out over multiple
files. Today’s programming environments provide little support for such task-
based development. What can be done?

Papers

How effective developers investigate source code: an exploratory study (Robillard,
Coelho, Murphy)

Using task context to improve programmer productivity (Kersten, Murphy)

Code bubbles: rethinking the user interface paradigm of integrated development environ-
ments (Bragdon, Reiss, et al.)

Multi-core programming
Parallel or multiple core programming is inherently more complex than simple,
single-threaded coding. What can programming environments do to simplify the
task.

Papers

Eraser: a dynamic data trace detector for multithreaded programs (Savage, Burrows, Nel-
son, Sobalvarro, Anderson)

Static deadlock detection for Java libraries (Williams, Thies, Ernst)

4.0 Syllabus

Week 1: (9/1, 9/3)
Course introduction
Assignment of students to topics
Discussion of the problems with today’s environment
Discussion of what the ideal tools would be

Week 2: (9/6, 9/8, 9/10)
History of programming environments
Current work at Brown

Week 3: (9/13, 9/15, 9/17)
First Topic of discussion

Week 4: (9/20, 9/22, 9/24)
No class Monday/Friday
Wednesday: Project proposals

Week 5: (9/27, 9/29, 10/1)
Second Topic of discussion

Week 6: (10/4, 10/6, 10/8)
MISSIVE August 26, 2010

Third Topic of discussion

Week 7: (10/11, 10/13, 10/15)
No class Monday
Fourth topic

Week 8: (10/18, 10/20, 10/22)
Fifth topic

Week 9: (10/25, 10/27, 10/29)
(Possibly no class Monday)
Sixth topic

Week 10: (11/1, 11/3, 11/5)
Seventh topic

Week 11: (11/8, 11/10, 11/12)
(Possibly no class Monday)
Eighth topic

Week 12: (11/15, 11/17, 11/19)
Ninth topic

Week 13: (11/22, 11/24, 11/26)
No class Wednesday, Friday.
Monday: TBD

Week 14: (11/29, 12/1, 12/3)
Tenth topic

Week 15: (12/6, 12/8)
Project Presentations
MISSIVE August 26, 2010

	MISSIVE
	Programming Environments Computer Science 233, Fall 2010
	Steven P. Reiss
	1.0 Overview
	2.0 Course Mechanics
	3.0 Possible Topics
	Collaboration
	Papers

	Configuration management
	Papers

	Debugging
	Papers

	Design and Model-Driven Development
	Papers

	User Interface Building
	Papers

	Testing
	Papers

	Scripting Languages
	Papers

	Web Applications
	Papers

	Code Search
	Papers

	Static Analysis
	Papers

	Dynamic Analysis
	Papers

	Teaching Environments
	Papers

	Working sets
	Papers

	Multi-core programming
	Papers

	4.0 Syllabus

