
Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

1

Dynamic Computational
Geometry

Roberto Tamassia
Department of Computer Science

Brown University

 1991  Roberto Tamassia



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

2

Summary

■ Range Searching (Range Tree)
■ Point Enclosure (Segment Tree)
■ Segment Intersection
■ Rectangle Intersection
■ Point Location with Segment Trees
■ Point Location with Dynamic Trees

Reference

■ Y.-J. Chiang and R. Tamassia, “Dynamic
Algorithms in Computational Geometry,”
Technical Report CS-91-24, Dept. of
Computer Science, Brown Univ., 1991.



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

3

Range Searching

■ Set P of points in d-dimensional space Ed

■ Range Query: report the points of P
contained in a query range r

■ Query range:
■ r = (a1,b1) × (a2,b2) × ... × (ad,bd)
■ d=1  interval
■ d=2 rectangle with sides parallel to axes

■ Variations of Range Queries:
■ count points in r
■ if points have associated weights,

compute total weight of points in r

P

r



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

4

One-Dimensional Range
Searching

■ use a balanced search tree T with internal
nodes associated with the points of P

■ thread nodes in in-order
■ Query for range r = (x',x")

■ search for x' and x" in T, this gives
nodes µ' and µ"

■ follow threads from µ' to µ" and report
points at internal nodes encountered

x' x"

µ' µ"



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

5

Complexity of One-Dimensional
Range Searching

■ Space requirement for n points: O(n)
■ Query time: O(log n + k), where k is the

number of points reported
■ Time for insertion or deletion of a point:

O(log n).
■ Note that thread pointers are not affected by

rotations.

Exercises

■ * Show how to perform queries without
using threads.

■ * Show how to perform 1-D range counting
queries in time O(log n).

■ * Assuming that the points have weights,
show how to find the heaviest point in the
query range in time O(log n)



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

6

One-Dimensional Range Tree

■ Alternative structure for 1-D range
searching.

■ More complex than a simple balanced
search tree.

■ Can be extended to higher dimensions.
■ Range Tree: balanced search tree T

■ leaves ↔ points, sorted by x-coordinate
■ node µ ↔ subset P(µ) of the points at the

leaves in the subtree of µ
■ Space for n points: O(n log n).

P(µ)

µ



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

7

One-Dimensional Range Queries

■ Αn allocation node µ of T for the query
range (x',x") is such that (x',x") contains P(µ)
but not P(parent(µ)).

■ the allocation nodes are O(log n)
■ they have disjoint point-sets
■ the union of their point-sets is the set of

points in the range (x',x")
■ Query Algorithm

■ find the allocation nodes of (x',x")
■ for each allocation node µ

report the points in P(µ)



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

8

How to Find the Allocation Nodes

■ Each node µ of T stores:
min(µ):   smallest x-coordinate in P(µ)
max(µ):  largest x-coordinate in P(µ)

■ Find(µ): recursive procedure to mark all the
allocation nodes of (x',x") in the subtree of µ
if  x' ≤ min(µ) and  x" ≥ max(µ)
     then mark µ as an allocation node
    else  if µ is not a leaf  then

if  x' ≤ max(left(µ))
then  Find(left(µ))

if  x" ≥ min(right(µ))
then  Find(right(µ))

x' x"



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

9

Dynamic Maintenance of the
Range Tree

■ Algorithm for the insertion of a point p
■ create a new leaf λ for p in T
■ rebalance T by means of rotations
■ for each ancestor µ of λ do

insert p in the set P(µ)
■ In a rotation, we need to perform split/

splice operations on the point-sets stored
at the nodes involved in the rotation.

■ We use a red-black tree for T, and
balanced trees for the point sets.

■ Insertion time: O(log2n).   Similarly for
deletions.

ν"

µ"ν'

µ'



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

10

Two-Dimensional Range Searching

■ 2-D Range-Tree, a two level structure
■ Primary structure: a 1-D range tree T based

on the x-coordinates of the points
■ leaves ↔ points, sorted by x-coordinate
■ node µ ↔ subset P(µ) of the points at the

leaves in the subtree of µ
■ Secondary structure for node µ:

■ Data structure for 1-D range searching
by y-coordinate in the set P(µ) (either a
1-D range tree or a balanced tree)

P(µ)

µ



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

11

Two-Dimensional Range Queries
with the 2-D Range-Tree

■ Query Algorithm for range r = (x',x") × (y',y")
■ find the allocation nodes of (x',x")
■ for each allocation node µ

perform a 1-D range query for range
(y',y") in the secondary structure of µ



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

12

Space and Query Time

■ The space used for n points depends on the
secondary data structures:

■ O(n log2n) space with 1-D range trees
■ O(n log n) with balanced trees

■ Query time for a 2-D range query:
■ O(log n) time to find the allocation nodes
■ Time to perform  a 1-D range query at

allocation node µ:  O(log n + kµ),
where kµ points are reported

■ Total time: Σµ (log n + kµ) = O(log2n + k)

Exercises

■ * Show how to perform 2-D range counting
queries in time O(log2n).

■ ** Give worst-case examples for the space
■ *** Extend the range tree to d dimensions:

show how to obtain O(n logd−1 n) space and
O(logdn + k) query time.



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

13

Dynamic Maintenance of the
Range Tree

■ Algorithm for the insertion of a point p
■ create a new leaf λ for p in T
■ rebalance T by means of rotations
■ for each ancestor µ of λ do

insert p in the secondary data
 structure of µ

■ When performing a rotation, we rebuild
from scratch the secondary data structure
of the node that becomes child (there
seems to be nothing better to do).

■ The cost of a rotation at a node µ is
O(|P(µ)|) = O(#leaves in subtree of µ)

■ By realizing T as a BB[α]-tree, the
amortized rebalancing time is O(log n).

■ The total insertion time is dominated by
the for-loop and is O(log2n) amortized.

■ Similar considerations hold for deletion.



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

14

Rotation in a 2-D Range Tree

■ The secondary
data structure
of µ" is the
same as the one
of ν'.

■ The secondary
data structure
of ν" needs to be
constructed.

■ The secondary
data structure
of µ' needs to be
discarded.

ν"

µ"

ν'

µ'



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

15

Summary of Two-Dimensional
Range Tree

■ Two-level tree structure (RR-tree)
■ Reduces 2-D range queries to a collection

of O(log n) 1-D range queries
■ O(n log n) space
■ O(log2n + k) query time
■ O(log2n) amortized update time

Exercise
■ *** Modify the range-tree to achieve query

time O(log n + k).



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

16

Point Enclosure

■ Set R of orthogonal ranges in Ed

■ Point Enclosure Query: given a query point
q, report the ranges of R containing q.

■ Dual of the range searching problem.
■ For d=1, R is a set of intervals.
■ For d=2, R is a set of rectangles.

R

q



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

17

One-Dimensional Point Enclosure

■ Let S be a set of segments (intervals), and X
the set of segment endpoints plus ±∞.

■ Segment-tree T for S: a two-level structure
■ Primary structure: balanced tree T for X

■ leaves ↔ elementary intervals induced
by the points of X

■ node µ ↔ x-coordinate x(µ) and interval
I(µ) formed by the union of the intervals
at the leaves in the subtree of µ

■ Secondary structure of a node µ:
■ set S(µ) of the segments that contain I(µ)

but not I(parent(µ)).

µ

Ι(µ)

S(µ)

T



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

18

Point Enclosure Queries with the
Segment Tree

■ Find the elementary interval I(λ)
containing the query point q by searching
for q in the primary structure of T

■ For each node µ in the path from λ to the
root, report the segments in S(µ)

q

λ



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

19

Complexity of One-Dimensional
Point Enclosure

■ A node µ is an allocation node of segment s
if S(µ) contains s.

■ Each segment s has O(log n) allocation
nodes

s

■ Space used by the segment-tree:  O(n log n)
■ Query time: O(log n + k)



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

20

Exercises

■ * Show how to perform point enclosure
counting queries in O(log n) time using
O(n) space.

■ ** Discuss special cases that have not been
addressed (e.g., a query point is a segment
endpoint).

■ ** Dynamize the segment tree, i.e., show
how to support insertions and deletions of
segments.

■ ** Give an efficient data structure to
perform 1-D segment intersection queries.
(Given a set of segments on a line, report
the segments intersecting a query
segment.)



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

21

Two-Dimensional Point Enclosure

■ We represent a set of rectangles with sides
parallel to the axes by means of a two-level
structure (SS-tree).

■ Primary structure:
■ a segment tree T for the x-intervals of

the rectangles of R
■ Secondary structure of a node µ:

■ a 1-D point enclosure data structure for
the y-intervals of the rectangles in S(µ)
(another segment tree)

■ Space for n rectangles: O(n log2n)
■ Query algorithm for point q

■ Locate q in T, this gives a leaf λ whose
elementary vertical strip contains q

■ Perform 1-D point enclosure queries in
the secondary structures of the nodes on
the path from λ to the root

■ Query time: O(log2n + k)



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

22

Orthogonal Segment Intersection

■ S: set of n horizontal segments in the plane
■ Orthogonal Segment Intersection Query:

given a vertical query segment s, report the
segments of S intersected by s.

■ Two data structures for this problem:
■ SR-tree: the segments of S are stored in

an x-based segment-tree T' .  The
secondary structures support 1-D range
searching on the y-coordinate.  A
segment intersection query corresponds
to performing O(log n) 1-D range queries
along a root-to-leaf path in T'.

■ RS-tree: the segments of S are stored in a
y-based range-tree T".  The secondary
structures support 1-D point enclosure
queries on the x-coordinate.  A segment
intersection query corresponds to
performing O(log n) 1-D point enclosure
queries at the allocation nodes of s in T".



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

23

Exercises

■ * Determine the space requirement and
query time of the SR-tree and RS-tree.

■ ** Dynamize the SR-tree and the RS-tree.
■ ** Show how to perform vertical “ray

shooting” queries for horizontal segments.

Example of Querying the SR-Tree

s



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

24

Orthogonal Rectangle Intersection

■ Let R be a set of n rectangles with sides
parallel to the axes

■ Orthogonal Rectangle Intersection Query:
given a query rectangle r, determine the
rectangles of R intersected by r.

■ Rectangles r' and r" intersect iff one of the
following mutually exclusive cases arises:

■ the bottom-left
corner of r' is in r"

■ the bottom-left
corner of r" is in r'

■ the left side of r'
intersects the
bottom side of r"

■ the left side of r"
intersects the
bottom side of r'

r"
r"

r"

r"

r'

r'

r'

r'



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

25

Orthogonal Rectangle Intersection

■ We can perform an orthogonal rectangle
intersection query as follows:

■ range search query for the bottom-left
corners of the rectangles of R contained
in r

■ point enclosure query for the rectangles
of R containing the bottom-left corner of r

■ orthogonal segment intersection query
for the bottom sides of the rectangles of R
intersected by the left side of r

■ orthogonal segment intersection query
for the left sides of the rectangles of R
intersected by the bottom side of r

■ We can use a data structure consisting of
four components: RR, SS, RS, and RS tress.

■ Orthogonal rectangle intersection queries in
d dimensions can be performed with a data
structure consisting of the d-level trees
given by the symbolic expansion of (R + S)d



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

26

Planar Point Location

■ Subdivision S of the plane into polygonal
regions, induced by the vertices and edges
of a planar graph

■ Find the region containing a query point q
■ Fundamental two-dimensional searching

problem

r1

r2

r3

r4

r6

r5

r7

q



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

27

Types of Planar Subdivisions

■ Monotone

■ Convex

■ Triangulation



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

28

Static Point Location

■ Preprocess the subdivision
■ Answer on-line queries

(query points are not known in advance)
■ Performance measures:

■ space
■ query time
■ preprocessing time

Dynamic Point Location

■ Perform an on-line sequence of intermixed
queries and updates (insertion and
deletion of vertices and edges)

■ Performance measures:
■ space
■ query time
■ insertion/deletion time



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

29

■ Translate a vertex

Update Operations for Planar
Subdivisions

■ Insert/Delete an edge

■ Insert/Delete a chain of edges
■ Insert/Delete an isolated vertex
■ Insert/Delete a vertex on an edge

r

r"

r'

e



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

30

Best Results for Static Point Location
[Kirkpatrick 83, Edelsbrunner Guibas
Stolfi 86, Sarnak Tarjan 86]
■ O(n) space
■ O(log n) query time
■ O(n log n) preprocessing time

Best Results for Dynamic Point Location
[Goodrich Tamassia 91] monotone subdiv.

[Cheng Janardan 90] connected subdiv.
■ O(n) space, O(log2n) query time, O(log n)

update time

[Preparata Tamassia 89] convex subdiv.

[Chiang Tamassia 91] monotone subdiv.
■ O(n log n) space, O(log n) query time,

O(log2n) amortized update time

[Goodrich Tamassia 91] monotone subdiv.
■ O(log n loglog n) query time, O(1) amortized

insertion time



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

31

Point Location with Segment Trees
(Overmars, CG '85)

■ Use an SR-tree for the set of edges
■ Each edge stores the region above it
■ The secondary structures are balanced

trees that support down-shooting queries in
a vertical “slab”

■ O(n log n) space and O(log2n) query time

q



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

32

Exercises

■ ** Show how to construct the segment-tree
structure for point location in O(n log n)
time

■ *** Dynamize the data structure
■ **** Modify the data structure to achieve

O(log n) query time and O(n log n) space in
a static environment

Open Problem
■ ***** Modify the data structure to achieve

O(log n log log n) query time and polylog
upate time in a fully dynamic environment.



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

33

Point Location With Dynamic Trees
(Goodrich-Tamassia, STOC '91)

■ A new method for planar point location,
based on interleaving primal and dual
spanning trees

■ Algorithms are relatively simple and easy to
implement

■ Optimal static data structure:  O(n) space,
O(log n) query time

■ Efficient fully dynamic data structure for
monotone subdivisions: O(n) space, O(log2n)
query time, O(log n) update time

■ Efficient on-line data structure for
insertions: O(log n loglog n) query time, O(1)
amortized insertion time

■ Improved 3-dimensional point location:
O(n log n) space, O(log2n) query time



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

34

Triangulations

■ A subdivision can be refined into a
triangulation by adding fictitious edges,
plus 3 fictitious vertices

r1

r1 r5

r5

r5



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

35

Monotone Spanning Tree

■ For each vertex, select an incoming edge
(incoming = incident from below)

■ This yields a monotone spanning tree T of
the subdivision

T



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

36

Dual Spanning Tree

■ Place a dual node in every region
■ For each non-tree edge, draw a dual edge
■ This yields a dual tree D

D



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

37

Cycles and Cuts

■ Each non-tree edge
■ forms a cycle with T
■ induces a cut in D



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

38

Point Location Algorithm

1. Find a centroid edge e whose cut
decomposes D into subtrees D' (internal)
and D" (external), each with at most 2/3 of
the nodes.

2. Determine if the query point q is inside or
outside the cycle C(e) induced e

3. If q is inside C(e), then recur on D', else
recur on D"

q inside C(e)

q outside C(e)

D'

D''



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

39

Example



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

40

Testing if q is Inside or Outside
Cycle C(e)

■ The boundary of cycle C(e) consists of two
monotone chains (L and R)

■ We represent each such chain with a
balanced tree

■ By doing binary search on the y-coordinate
of q, we determine the points of L and R in
front of q in O(log n) time

q



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

41

Centroid Decomposition

■ Represent the recursive decomposition of
the dual tree by means of a binary tree B

■ A point location query traverses a root-to-
leaf path in B

B



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

42

Complexity Analysis

Query Time
■ The centroid decomposition tree B has

2n−5 leaves (regions)
■  For each node µ of B:

leaves(µ) < 2/3 leaves(parent(µ))
■ The centroid tree has depth O(log n)
■ Visiting each node takes O(log n) time
■ Query time:  O(log2n)

Space
■ If we store at each node the corresponding

cycle, we use Ο(n2) space
■ To save space and dynamize the data

structure, we use dynamic trees ...



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

43

Dynamic Trees

[Sleator Tarjan 1983]
■ Data structure to represent a collection of

rooted trees
■ Operations:

■ Path(v): return the path from v to the
root (as a balanced binary tree)

■ Link: join two trees by adding an edge
■ Cut: decompose a tree by removing an

edge

T1

T1

T2

T2



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

44

Dynamic Trees and Point
Location

■ use dynamic trees for T and D
■ use D for finding centroid edges
■ use T for retrieving edge chains

■ Space:  O(n)

Query algorithm
1. If D consists of a single region r, then

report r and stop
2. Find a centroid edge e=(u,v)
3. Cut D at edge e into D' (internal) and D"

(external)
4. L(e) =  Path(u)
5. R(e) = splice(e,Path(v))
6. If q is inside, L(e) ∪ R(e), then recur on D',

else recur on D"



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

45

Path Decomposition

■ partition the edges into light and heavy:

heavy edge: size(child) > size(parent) / 2

light edge: size(child) ≤ size(parent) / 2
■ heavy edges form disjoint solid paths
■ going from a leaf to the root we traverse at

most log n light edges
■ “removing light edges decomposes an

unbalanced tree into a balanced tree of
solid paths”



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

46

Representing a Solid Path
■ we represent each solid path P by means of

a balanced binary tree, called path-tree
■ leaf ↔ node of P
■ internal node ↔  subpath of P

■ solid paths can be split and spliced in time
O(log n)



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

47

Operation Path(v)

■ Construct the path from v to the root by
splitting and splicing O(log n) solid paths

v

v

split

splice



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

48

Finding a Centroid Edge

Theorem:
There exists a centroid edge that is either on
the solid path P of the root, or is incident to
the bottommost node of P
■ Case 1: w1 < 1 + 2n/3, centroid edge on P
■ Case 2: w1 > 1 + 2n/3, centroid edge incident

 to µ1

µ1

µ2

µ3

µ4

µ5

Corollary:
A centroid edge can be found in time O(log n)

w1=
w2=4 w3=3

w4=6 w5=8



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

49

T1

T2

Link/Cut Operations

■ In a link operation, O(log n) edges may
change from light to heavy, thus causing
O(log n) split/splice operations on the solid
paths.  (And similarly for a cut operation.)

T1

T2



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

50

Time Complexity of Link/Cut

■ Using standard balanced trees (e.g., AVL,
red-black) each split/splice operation takes
O(log n) time

■ Total time complexity: O(log2n)

■ To improve the update time, use biased
search trees [Bent-Sleator-Tarjan, 85]

■ node µ on a solid path P
■ weight w(µ)  =  size of child of µ not in  P
■ depth of µ-leaf = O(log (W/w(µ))), where

W is the total weight
■ Since all the split/splice operations on

solid paths are along a root-to-leaf path,
the time complexity is now:

   O(log(n/w1)+log(w1/w2)+...+log (wk-1/wk))
■ Total time complexity: O(log n)



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

51

Dynamization

■ Repertory of update operations for monotone
subdivisions:

■ insert/delete an edge
■ expand a vertex into two vertices

connected by an edge
■ contract an edge
■ insert/delete a monotone chain

■ Use the leftist monotone spanning tree
obtained by selecting the lefmost incoming
edge of each vertex

■ Cannot dynamically maintain a
triangulation of the subdivision

■ Instead, dynamically maintain a refinement
of the subdivision such that the dual tree D
has degree at most 3

■ An update operation on the subdivision
corresponds to performing O(1) link/cut
operations on the dynamic trees



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

52

Refinement of the Subdivision

■ Insert a “comb” that duplicates the left
chain of every region. The “comb” is placed
infinitesimally close to the left chain

■ The refined subdivision is topologically
different but geometrically equivalent to
the original subdivision.

■ In the refined subdivision the dual tree of
the leftist monotone spanning tree has
degree at most 3.


