# Dynamic Computational Geometry 

R oberto Tamassia Department of Computer Science Brown University

© 1991 Roberto Tamassia

## Summary

- Range Searching (Range Tree)
- Point Enclosure (Segment Tree)
- Segment Intersection
- Rectangle Intersection
- Point Location with Segment Trees
- Point Location with Dynamic Trees


## Reference

- Y.-J. Chiang and R. Tamassia, "Dynamic Algorithms in Computational Geometry," Technical Report CS-91-24, Dept. of Computer Science, Brown Univ., 1991.


## Range Searching

- Set $P$ of points in d-dimensional space $E^{d}$
- Range Query: report the points of $P$ contained in a query range $r$
- Query range:
- $r=\left(a_{1}, b_{1}\right) \times\left(a_{2}, b_{2}\right) \times \ldots \times\left(a_{d}, b_{d}\right)$
- d=1 interval
- d=2 rectangle with sides parallel to axes
- Variations of Range Queries:
- count points in r
- if points have associated weights, compute total weight of points in $r$


Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## One-Dimensional Range Searching

- use a balanced search tree T with internal nodes associated with the points of $P$
- thread nodes in in-order
- Query for ranger = ( $\left.x^{\prime}, x^{\prime \prime}\right)$
- search for $x^{\prime}$ and $x^{\prime \prime}$ in T, this gives nodes $\mu^{\prime}$ and $\mu^{\prime \prime}$
- follow threads from $\mu^{\prime}$ to $\mu$ " and report points at internal nodes encountered


Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## Complexity of One-Dimensional Range Searching

- Space requirement for n points: $\mathrm{O}(\mathrm{n})$
- Query time: $\mathrm{O}(\log \mathrm{n}+\mathrm{k})$, where k is the number of points reported
- Time for insertion or deletion of a point: O( $\log \mathrm{n})$.
- Note that thread pointers are not affected by rotations.


## Exercises

* Show how to perform queries without using threads.
-     * Show how to perform 1-D range counting queries in time O(log n).
-     * Assuming that the points have weights, show how to find the heaviest point in the query range in time $O(\log n)$


## One-Dimensional Range Tree

- Alternative structure for 1-D range searching.
- M ore complex than a simple balanced search tree.
- Can be extended to higher dimensions.
- Range Tree: balanced search tree T
- leaves $\leftrightarrow$ points, sorted by x-coordinate
- node $\mu \leftrightarrow$ subset P $(\mu)$ of the points at the leaves in the subtree of $\mu$
- Space for $n$ points: $\mathrm{O}(\mathrm{n} \log \mathrm{n})$.


Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## One-Dimensional Range Queries

- An allocation node $\mu$ of $T$ for the query range ( $x^{\prime}, x^{\prime \prime}$ ) is such that ( $x^{\prime}, x^{\prime \prime}$ ) contains $P(\mu)$ but not P (parent $(\mu)$ ).
- the allocation nodes are $O(\log n)$
- they have disjoint point-sets
- the union of their point-sets is the set of points in the range ( $x^{\prime}, x^{\prime \prime}$ )
- Query Algorithm
- find the allocation nodes of ( $x^{\prime}, x^{\prime \prime}$ )
- for each allocation node $\mu$ report the points in $\mathrm{P}(\mu)$


Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## How to Find the Allocation Nodes

- Each node $\mu$ of T stores:
$\min (\mu)$ : smallest $x$-coordinate in $\mathrm{P}(\mu)$
$\max (\mu)$ : largest $x$-coordinate in $\mathrm{P}(\mu)$
- Find $(\mu)$ : recursive procedure to mark all the allocation nodes of ( $x^{\prime}, x^{\prime \prime}$ ) in the subtree of $\mu$ if $x^{\prime} \leq \min (\mu)$ and $x^{\prime \prime} \geq \max (\mu)$ then mark $\mu$ as an allocation node else if $\mu$ is not a leaf then
if $x^{\prime} \leq \max (\operatorname{left}(\mu))$
then Find(left( $\mu$ ))
if $x^{\prime \prime} \geq \min (\operatorname{right}(\mu))$
then Find(right( $\mu$ ))



## Dynamic Maintenance of the Range Tree

- Algorithm for the insertion of a point $p$ - create a new leaf $\lambda$ for $p$ in $T$ - rebalance $T$ by means of rotations - for each ancestor $\mu$ of $\lambda$ do insert p in the set $\mathrm{P}(\mu)$
- In a rotation, we need to perform split/ splice operations on the point-sets stored at the nodes involved in the rotation.
- We use a red-black tree for T, and balanced trees for the point sets.
- Insertion time: $\mathrm{O}\left(\log ^{2} \mathrm{n}\right)$. Similarly for deletions.


Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## Two-Dimensional Range Searching

- 2-D Range-Tree, a two level structure
- Primary structure: a 1-D range treeT based on the $x$-coordinates of the points
- leaves $\leftrightarrow$ points, sorted by x-coordinate - node $\mu \leftrightarrow$ subset P $(\mu)$ of the points at the leaves in the subtree of $\mu$
- Secondary structure for node $\mu$ :
- Data structure for 1-D range searching by $y$-coordinate in the set $\mathrm{P}(\mu)$ (either a 1-D range tree or a balanced tree)


Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## Two-Dimensional Range Queries with the 2-D Range-Tree

- Query Algorithm for range $r=\left(x^{\prime}, x^{\prime \prime}\right) \times\left(y^{\prime}, y^{\prime \prime}\right)$
- find the allocation nodes of ( $x^{\prime}, x^{\prime \prime}$ )
- for each allocation node $\mu$ perform a 1-D range query for range ( $y^{\prime}, y^{\prime \prime}$ ) in the secondary structure of $\mu$


Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## Space and Query Time

- The space used for $n$ points depends on the secondary data structures:
- O( $n \log ^{2} n$ ) space with 1-D range trees
- O(n $\log \mathrm{n})$ with balanced trees

Query time for a 2-D range query:

- O(log n) time to find the allocation nodes
- Time to perform a 1-D range query at allocation node $\mu$ : $O\left(\log n+k_{\mu}\right)$, where $\mathrm{k}_{\mu}$ points are reported
- Total time: $\Sigma_{\mu}\left(\log n+k_{\mu}\right)=O\left(\log ^{2} n+k\right)$


## Exercises

* Show how to perform 2-D range counting queries in time $O\left(\log ^{2} n\right)$.
** Give worst-case examples for the space *** Extend the range tree to d dimensions: show how to obtain $O\left(n \log ^{d-1} n\right.$ ) space and $\mathrm{O}\left(\log ^{\mathrm{d}} \mathrm{n}+\mathrm{k}\right)$ query time.


## Dynamic Maintenance of the Range Tree

- Algorithm for the insertion of a point p
- create a new leaf $\lambda$ for $p$ in $T$
- rebalance $T$ by means of rotations
- for each ancestor $\mu$ of $\lambda$ do insert p in the secondary data structure of $\mu$
- When performing a rotation, we rebuild from scratch the secondary data structure of the node that becomes child (there seems to be nothing better to do).
- The cost of a rotation at a node $\mu$ is $\mathrm{O}(|\mathrm{P}(\mu)|)=\mathrm{O}$ (\# eaves in subtree of $\mu$ )
- By realizing $T$ as a BB[ $\alpha$ ]-tree, the amortized rebalancing time is $\mathrm{O}(\log \mathrm{n})$.
- The total insertion time is dominated by the for-loop and is $\mathrm{O}\left(\log ^{2} \mathrm{n}\right)$ amortized.
- Similar considerations hold for deletion.


## Rotation in a 2-D Range Tree



- The secondary data structure of $\mu$ " is the same as the one of $v$ '.
- The secondary data structure of $v$ " needs to be constructed.
- The secondary data structure of $\mu^{\prime}$ needs to be discarded.

Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## Summary of Two-Dimensional Range Tree

- Two-level tree structure (RR-tree)
- Reduces 2-D range queries to a collection of $O(\log n)$ 1-D range queries
- O( $n \log n$ ) space
- $O\left(\log ^{2} n+k\right)$ query time
- O( $\left.\log ^{2} n\right)$ amortized update time


## Exercise

- *** M odify the range-tree to achieve query time $O(\log n+k)$.


## Point Enclosure

- Set $R$ of orthogonal ranges in $E^{d}$
- Point Enclosure Query: given a query point q , report the ranges of R containing q .
- Dual of the range searching problem.
- For $d=1, R$ is a set of intervals.
- For $d=2, R$ is a set of rectangles.


Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## One-Dimensional Point Enclosure

- Let S be a set of segments (intervals), and X the set of segment endpoints plus $\pm \infty$.
- Segment-tree T for S: a two-level structure
- Primary structure: balanced tree T for X
- leaves $\leftrightarrow$ elementary intervals induced by the points of $X$
- node $\mu \leftrightarrow x$-coordinate $x(\mu)$ and interval $I(\mu)$ formed by the union of the intervals at the leaves in the subtree of $\mu$
- Secondary structure of a node $\mu$ :
- set $\mathrm{S}(\mu)$ of the segments that contain I $(\mu)$ but not I (parent $(\mu)$ ).


I $(\mu)$


Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## Point Enclosure Queries with the Segment Tree

- Find the elementary interval I $(\lambda)$ containing the query point q by searching for $q$ in the primary structure of $T$
- For each node $\mu$ in the path from $\lambda$ to the root, report the segments in $\mathrm{S}(\mu)$


Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## Complexity of One-Dimensional

 Point Enclosure- A node $\mu$ is an allocation node of segment s if $S(\mu)$ contains $s$.
- Each segment s has O(logn) allocation nodes

- Space used by the segment-tree: O(n log n)
- Query time: O(log $n+k)$


## Exercises

-     * Show how to perform point enclosure counting queries in $\mathrm{O}(\log \mathrm{n})$ time using $\mathrm{O}(\mathrm{n})$ space.
** Discuss special cases that have not been addressed (e.g., a query point is a segment endpoint).
- ** Dynamize the segment tree, i.e., show how to support insertions and deletions of segments.
- ** Give an efficient data structure to perform 1-D segment intersection queries. (Given a set of segments on a line, report the segments intersecting a query segment.)


## Two-Dimensional Point Enclosure

- We represent a set of rectangles with sides parallel to the axes by means of a two-level structure (SS-tree).
- Primary structure:
- a segment tree T for the x -intervals of the rectangles of $R$
- Secondary structure of a node $\mu$ :
- a 1-D point enclosure data structure for the $y$-intervals of the rectangles in $\mathrm{S}(\mu)$ (another segment tree)
- Space for $n$ rectangles: $\mathrm{O}\left(\mathrm{n} \log ^{2} \mathrm{n}\right.$ )
- Query algorithm for point q
- Locate q in T, this gives a leaf $\lambda$ whose elementary vertical strip contains q
- Perform 1-D point enclosure queries in the secondary structures of the nodes on the path from $\lambda$ to the root
- Query time: $\mathrm{O}\left(\log ^{2} \mathrm{n}+\mathrm{k}\right)$


## Orthogonal Segment Intersection

- S: set of n horizontal segments in the plane
- Orthogonal Segment Intersection Query: given a vertical query segment s, report the segments of S intersected by s.
- Two data structures for this problem:
- SR-tree: the segments of S are stored in an x-based segment-tree $\mathrm{T}^{\prime}$. The secondary structures support 1-D range searching on the $y$-coordinate. A segment intersection query corresponds to performing $\mathrm{O}(\log n$ ) 1-D range queries al ong a root-to-leaf path in $\mathrm{T}^{\prime}$.
- RS-tree: the segments of S are stored in a y-based range-tree T". The secondary structures support 1-D point enclosure queries on the x-coordinate. A segment intersection query corresponds to performing $\mathrm{O}(\log \mathrm{n})$ 1-D point enclosure queries at the allocation nodes of $s$ in $\mathrm{T}^{\prime \prime}$.


## Example of Querying the SR-Tree



## Exercises

. * Determine the space requirement and query time of the SR-tree and RS-tree.

- ** Dynamize the SR-tree and the RS-tree.
** Show how to perform vertical "ray shooting" queries for horizontal segments.

Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## Orthogonal Rectangle Intersection

- Let R be a set of n rectangles with sides parallel to the axes
- Orthogonal Rectangle Intersection Query: given a query rectangle $r$, determine the rectangles of $R$ intersected by $r$.
- Rectangles $r$ ' and $r$ " intersect iff one of the following mutually exclusive cases arises:
- the bottom-left corner of $r^{\prime}$ is in $r^{\prime \prime}$

- the bottom-left corner of $r^{\prime \prime}$ is in $r^{\prime}$
- the left side of $r^{\prime}$ intersects the bottom side of $r$ "

- the left side of $r$ " intersects the bottom side of $r^{\prime}$

r"


## Orthogonal Rectangle Intersection

- We can perform an orthogonal rectangle intersection query as follows:
- range search query for the bottom-left corners of the rectangles of $R$ contained in r
- point encl osure query for the rectangles of $R$ containing the bottom-left corner of $r$
- orthogonal segment intersection query for the bottom sides of the rectangles of $R$ intersected by the left side of $r$
- orthogonal segment intersection query for the left sides of the rectangles of $R$ intersected by the bottom side of $r$
- We can use a data structure consisting of four components: RR, SS, RS, and RS tress.
- Orthogonal rectangle intersection queries in d dimensions can be performed with a data structure consisting of the d-level trees given by the symbolic expansion of $(R+S)^{d}$


## Planar Point Location

- Subdivision S of the plane into polygonal regions, induced by the vertices and edges of a planar graph
- Find the region containing a query point q
- Fundamental two-dimensional searching problem

$r_{7}$

Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## Types of Planar Subdivisions

- Monotone

- Convex

- Triangulation


Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## Static Point Location

- Preprocess the subdivision
- Answer on-line queries
(query points are not known in advance)
- Performance measures:
- space
- query time
- preprocessing time


## Dynamic Point Location

- Perform an on-line sequence of intermixed queries and updates (insertion and deletion of vertices and edges)
- Performance measures:
- space
- query time
- insertion/deletion time


## Update Operations for Planar Subdivisions

- Insert/Delete an edge

- Insert/Delete a chain of edges
- Insert/Delete an isolated vertex
- Insert/Delete a vertex on an edge

- Translate a vertex

ALCOM Summer School, Aarhus, August 1991

## Best Results for Static Point Location

 [Kirkpatrick 83, Edelsbrunner Guibas Stolfi 86, Sarnak Tarjan 86]- O(n) space
- O(log n) query time
- O( $n \log n$ ) preprocessing time

Best Results for Dynamic Point Location [Goodrich Tamassia 91] monotone subdiv. [Cheng J anardan 90] connected subdiv.

- $O(n)$ space, $O\left(\log ^{2} n\right)$ query time, $O(\log n)$ update time
[Preparata Tamassia 89] convex subdiv. [Chiang Tamassia 91] monotone subdiv. - O( $n \log n$ ) space, $O(\log n$ ) query time, $\mathrm{O}\left(\log ^{2} \mathrm{n}\right)$ amortized update time
[Goodrich Tamassia 91] monotone subdiv.
- O(log n loglog n) query time, O(1) amortized insertion time


## Point Location with Segment Trees (Overmars, CG '85)

- Use an SR-tree for the set of edges
- Each edge stores the region above it
- The secondary structures are balanced trees that support down-shooting queries in a vertical "slab"
- $O(n \log n)$ space and $O\left(\log ^{2} n\right)$ query time


Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## Exercises

- ** Show how to construct the segment-tree structure for point location in O(n $\log \mathrm{n}$ ) time
- *** Dynamize the data structure **** M odify the data structure to achieve $O(\log n)$ query time and $O(n \log n)$ space in a static environment

Open Problem

- ***** M odify the data structure to achieve O(log $n \log \log n$ ) query time and polylog upate time in a fully dynamic environment.


## Point Location With Dynamic Trees

 (Goodrich-Tamassia, STOC '91)- A new method for planar point location, based on interleaving primal and dual spanning trees
- Algorithms are relatively simple and easy to implement
- Optimal static data structure: O(n) space, O(log n) query time
- Efficient fully dynamic data structure for monotone subdivisions: $O(n)$ space, $O\left(\log ^{2} n\right.$ ) query time, $O(\log n)$ update time
- Efficient on-line data structure for insertions: O(log $n \log \log n$ ) query time, O(1) amortized insertion time
- Improved 3-dimensional point location: $O(n \log n)$ space, $O\left(\log ^{2} n\right)$ query time


## Triangulations

- A subdivision can be refined into a triangulation by adding fictitious edges, plus 3 fictitious vertices


Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## Monotone Spanning Tree

. For each vertex, select an incoming edge (incoming = incident from below)

- This yields a monotone spanning treeT of the subdivision



## Dual Spanning Tree

- Place a dual node in every region
- For each non-tree edge, draw a dual edge - This yields a dual tree D


Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## Cycles and Cuts

- Each non-tree edge
- forms a cycle with T - induces a cut in D


Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## Point Location Algorithm

1. Find a whose cut decomposes D into subtrees D' (internal) and $D^{\prime \prime}$ (external), each with at most $2 / 3$ of the nodes.
2. Determine if the query point $\mathbf{q}$ is inside or outside the cycle C(e) induced e
3. If $\mathbf{q}$ is inside $C(e)$, then recur on $D^{\prime}$, else recur on D"


Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## Example



Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## Testing if $q$ is Inside or Outside Cycle C(e)

- The boundary of cycle $C(e)$ consists of two monotone chains ( L and R )
- We represent each such chain with a balanced tree
- By doing binary search on the y-coordinate of $q$, we determine the points of $L$ and $R$ in front of qin $\mathrm{O}(\log \mathrm{n})$ time


Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## Centroid Decomposition

- Represent the recursive decomposition of the dual tree by means of a binary tree B
- A point location query traverses a root-to-


Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## Complexity Analysis

## Query Time

- The centroid decomposition tree B has $2 n-5$ leaves (regions)
- For each node $\mu$ of B:
leaves $(\mu)<2 / 3$ leaves(parent $(\mu)$ )
- The centroid tree has depth $O(\log n)$
- Visiting each node takes $O(\log n)$ time
- Query time: $\mathrm{O}\left(\log ^{2} \mathrm{n}\right)$


## Space

- If we store at each node the corresponding
cycle, we use O( $n^{2}$ ) space
- To save space and dynamize the data structure, we use dynamic trees ...


## Dynamic Trees

[Sleator Tarjan 1983]

- Data structure to represent a collection of rooted trees
- Operations:
- Path(v): return the path from v to the root (as a balanced binary tree)
- Link: join two trees by adding an edge
- Cut: decompose a tree by removing an edge



## Dynamic Trees and Point Location

- use dynamic trees for T and D - use $D$ for finding centroid edges - use T for retrieving edge chains
- Space: O(n)


## Query algorithm

1. If $D$ consists of a single region $r$, then report $r$ and stop
2. Find a centroid edge $e=(u, v)$
3. Cut D at edge einto $\mathrm{D}^{\prime}$ (internal) and $\mathrm{D}^{\prime \prime}$ (external)
4. $L(e)=$ Path $(u)$
5. $R(e)=$ splice $(e, P a t h(v))$
6. If $\mathbf{q}$ is inside, $L(e) \cup R(e)$, then recur on $D^{\prime}$, else recur on D"

## Path Decomposition

- partition the edges into light and heavy: heavy edge: size(child) >size(parent) / 2 light edge: size(child) $\leq$ size(parent) / 2
- heavy edges form disjoint solid paths
- going from a leaf to the root we traverse at most log $n$ light edges
- "removing light edges decomposes an unbal anced tree into a balanced tree of solid paths"


Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## Representing a Solid Path

- we represent each solid path P by means of a balanced binary tree, called path-tree - leaf $\leftrightarrow$ node of $P$


## - internal node $\leftrightarrow$ subpath of $P$

- solid paths can be split and spliced in time O(log n)


Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## Operation Path(v)

- Construct the path from v to the root by splitting and splicing $\mathrm{O}(\log \mathrm{n})$ solid paths


Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## Finding a Centroid Edge

## Theorem:

There exists a centroid edge that is either on the solid path P of the root, or is incident to the bottommost node of $P$

- Case 1: $\mathrm{w}_{1}<1+2 n / 3$, centroid edge on $P$
- Case 2: $w_{1}>1+2 n / 3$, centroid edge incident to $\mu_{1}$


## Corollary:

A centroid edge can be found in time $O(\log n)$

## Link/Cut Operations

- In a link operation, O(log n) edges may change from light to heavy, thus causing O(log $n$ ) split/splice operations on the solid paths. (And similarly for a cut operation.)


Dynamic Computational Geometry
ALCOM Summer School, Aarhus, August 1991

## Time Complexity of Link/Cut

- Using standard bal anced trees (e.g., AVL, red-black) each split/splice operation takes O( $\log n$ ) time
- Total time complexity: $\mathrm{O}\left(\log ^{2} \mathrm{n}\right)$
- To improve the update time, use biased search trees [Bent-Sleator-Tarjan, 85]
- node $\mu$ on a solid path P
- weight $\mathrm{w}(\mu)=$ size of child of $\mu$ not in P - depth of $\mu$-leaf $=\mathrm{O}(\log (\mathrm{W} / \mathrm{w}(\mu)))$, where W is the total weight
- Since all the split/splice operations on solid paths are along a root-to-leaf path, the time complexity is now:
$\mathrm{O}\left(\log \left(\mathrm{n} / \mathrm{w}_{1}\right)+\log \left(\mathrm{w}_{1} / \mathrm{w}_{2}\right)+\ldots+\log \left(\mathrm{w}_{\mathrm{k}-1} / \mathrm{w}_{\mathrm{k}}\right)\right)$ - Total time complexity: $\mathbf{O}(\log n)$


## Dynamization

- Repertory of update operations for monotone subdivisions:
. insert/delete an edge
- expand a vertex into two vertices connected by an edge
- contract an edge
- insert/delete a monotone chain
- Use the leftist monotone spanning tree obtained by selecting the lefmost incoming edge of each vertex
- Cannot dynamically maintain a triangulation of the subdivision
- Instead, dynamically maintain a refinement of the subdivision such that the dual tree D has degree at most 3
- An update operation on the subdivision corresponds to performing O(1) link/cut operations on the dynamic trees


## Refinement of the Subdivision

- Insert a "comb" that duplicates the left chain of every region. The "comb" is placed infinitesimally close to the left chain
- The refined subdivision is topol ogically different but geometrically equivalent to the original subdivision.
- In the refined subdivision the dual tree of the leftist monotone spanning tree has degree at most 3.


