
Hedging Uncertainty: Approximation

Algorithms for Stochastic Optimization
Problems�

R. Ravi and Amitabh Sinha

Graduate School of Industrial Administration, Carnegie Mellon University,
Pittsburgh, PA, USA

ravi@cmu.edu, asinha@andrew.cmu.edu

Abstract. We study the design of approximation algorithms for stoch-
astic combinatorial optimization problems. We formulate the problems in
the framework of two-stage stochastic optimization, and provide nearly
tight approximations. Our problems range from the simple (shortest
path, vertex cover, bin packing) to complex (facility location, set cover),
and contain representatives with different approximation ratios.

The approximation ratio of the stochastic variant of a typical problem is
of the same order of magnitude as its deterministic counterpart. Further-
more, common techniques for designing approximation algorithms such
as LP rounding, the primal-dual method, and the greedy algorithm, can
be carefully adapted to obtain these results.

1 Introduction

With the increasing success of optimization algorithms in process optimization,
these methods are making inroads into earlier planning stages of large scale
projects. The inherent difference between optimization at the planning stage
and post-facto optimization is that in the former, data is not fully available.
Yet costly decisions with wide-ranging implications need to be taken in the face
of incomplete data. Nevertheless, quite often forecasts of future uncertainty are
available that can be used in the planning model. Forecasts, by nature, are
imprecise and provide at best a range of possible futures. The field of stochastic
optimization is an attempt to model such situations. For a detailed introduction,
the reader is referred to one of the recent texts on the topic [4,19].

In a parallel development, the field of approximation algorithms [33,2] evol-
ved to counter the prohibitive resource requirements for exact solution of NP-
hard combinatorial optimization problems. Informally, these algorithms run in
polynomial time and deliver a performance ratio on the quality of the output
solution over all instances. As the size of the models being solved increases in
scale, this solution approach gains in importance.

� This work was supported in part by NSF grant CCR-0105548 and ITR grant CCR-
0122581 (The ALADDIN project).

D. Bienstock and G. Nemhauser (Eds.): IPCO 2004, LNCS 3064, pp. 101–115, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

102 R. Ravi and A. Sinha

However, as approximation algorithms become more sophisticated in scope
and technique, the refrain from real-world practitioners who have the need for
such algorithms is that the input data is seldom well-defined, thus diminishing
the value of the solutions and guarantees provided by the algorithm. Conversely,
while the field of stochastic optimization models the uncertainty in data fairly
well, the running times of the exact algorithms developed in the stochastic op-
timization community often prove prohibitive. This paper combines the best of
both worlds, by providing approximation algorithms for the stochastic version
of several classical optimization problems.

2 Background

Two-stage Model Among the most popular models in stochastic optimiza-
tion is the two-stage model with recourse. At the outset, some data may be
known deterministically, whereas the uncertain future is characterized only by a
probability distribution. The decisions made at this point are referred to as the
first-stage decisions. Subsequently, the actual future is realized, and then there
may be the opportunity to augment the first-stage solution in order to optimize
for the realized scenario. This second stage of decision making is called the re-
course stage. The goal is to optimize the first-stage decision variables so as to
minimize the expected cost over both stages.

Mathematical Formulation We consider the two-stage stochastic optimiza-
tion problem with recourse, with an additional restriction: finitely many sce-
narios. This means that the future will be one of a finite set of possibilities
(scenarios), and the parameters and probability of occurence of each scenario is
known up-front. The mathematical formulation of this model is given below.

Vector x0 is the set of first-stage decision variables, with constraints Ax0 = b,
and a cost vector is c. There are m scenarios, with the kth scenario having
probability of occurence pk, cost vector qk, and decision variables xk. If the
kth scenario is realized, then the combined solution (x0, xk) must satisfy the
constraints given by the matrix T k and requirement vector hk. Let P denote
additional constraints such as non-negativity or integrality.

min cT x0 +
∑m

k=1 pk(qk)T xk (IPS)

s.t. Ax0 = b
T k(x0, xk) = hk k = 1, 2, . . . , m

(x0, xk) ∈ P k = 1, 2, . . . , m

The interested reader may refer to any of the texts cited above for a more
complete description of models of stochastic optimization and their uses. Schultz,
Stougie and van der Vlerk [30] provide an excellent survey of two-stage stochastic
integer programming, while Kong and Schaefer [20] recently provided approxi-
mation algorithms for a class of such problems.

Approximation Algorithms The raison d’etre for approximation algorithms
is the prohibitively high running time of exact algorithms for integer program-

Hedging Uncertainty 103

Problem Det. Stochastic Our results Hardness
approx. elements (Apx. ratio)

Bin packing APTAS [5] Object sizes APTAS NP-comp.[5]

Shortest paths 1[7] Sink only 5 MAX-SNP
Sink and metric O(log2 n log m) Ω(log2 n)

Vertex cover 2[27] Vertex weights, incidence 2 1.16[14]

Facility location 1.52[25] Demands, facility costs 8 1.46[10]

Set cover O(log n)[17] Set weights, inclusions O(log nm) Ω(log n)[1]
Ω(log m)

Fig. 1. Summary of results. We use m to denote the number of scenarios and n
to refer to the number of combinatorial elements (number of vertices in graph
problems and number of elements in the set cover problem).

ming and combinatorial optimization, due to their NP-completeness. Approx-
imation algorithms run in time polynomial in the size of the input, and also
provide guarantees in the form of approximation ratios. If C is a class of min-
imization problems and OPT (I) and A(I) respectively denote the value of an
optimal solution and the solution output by algorithm A, then the approximation
ratio ρ(A) of algorithm A is defined as ρ(A) = maxI∈C

A(I)
OPT (I) .

While the area of approximation algorithms has been a very active field, most
approximation algorithms assume complete knowledge of the input at the out-
set, barring a few exceptions such as scheduling problems [26,32]. Recently, and
independently of us, Immorlica et al. [15] considered approximation algorithms
for stochastic optimization problems with a restriction on the cost function: in
the second stage, all costs go up uniformly by a factor of λ. A generalization of
their model was considered by Gupta et al. [12], who provided approximation
algorithms with only sampling access to the second-stage realization process,
thereby obtaining a framework which can handle an arbitrary number of scenar-
ios as long as there is an efficient process to sample the second stage.

Our Results We demonstrate the relevance and applicability of developing ap-
proximation algorithms for stochastic optimization. We carefully adapt existing
techniques for deterministic versions of several problems to provide approxima-
tion guarantees for the stochastic versions within constant factors.

Our results are summarized in Figure 1. The current best known deterministic
approximations are listed, with a “1” meaning that the problem can be solved
optimally in polynomial time. All the stochastic approximation ratios are derived
in this paper. Some of the hardness results are carried over from the underlying
deterministic problems; the remaining are proved in this paper. An APTAS is an
asymptotic polynomial time approximation scheme, which is an algorithm whose
performance ratio approaches 1 as the number of objects increases. A problem
is said to be MAX-SNP-hard [28], abbreviated MAX-SNP in the table, if there

104 R. Ravi and A. Sinha

is a constant c > 1 such that it is impossible to approximate the problem with
performance ratio smaller than c unless P = NP .

Paper Outline In the sequel, we consider the five problems listed in Figure 1.
We consider Stochastic Vertex Cover in the next section, and prove our results.
Subsequent sections are devoted to the stochastic versions of four other problems
that we study: Facility Location, Shortest Paths, Bin Packing and Set Cover.
We conclude with directions for future research in Section 8.

3 Vertex Cover

We are given a first-stage (undirected) graph G = (V, E0), with m possible
scenarios, each consisting of a probability of occurrence pk and a set of edges Ek

(not necessarily subsets of E0). The first-stage cost of vertex v is c0
v, and its cost

in scenario k is ck
v . The objective is to identify a set of vertices to be selected in

the first stage, so that the expected cost of extending this set to a vertex cover
of the edges of the realized second-stage scenario is minimized.

We require that the edges in Ek \E0 have to be covered in the second stage,
even if one of their end-points was chosen in the first stage. This generalizes
the case when first-stage vertices cover all second-stage edges incident to them.
The best known approximation algorithm for the deterministic version of vertex
cover has performance ratio 2 − log log |V |

2 log |V | , due to Monien and Speckenmeyer
[27]. A lower bound of 1.16 on the hardness of approximating the problem was
shown by H̊astad [14]. Our algorithm for the generalized stochastic version of
vertex cover has approximation ratio 2, asymptotically matching the best known
approximation for the deterministic version.

Integer Program Formulation In formulation IPSV C below, variable xk
v

indicates whether or not vertex v is purchased in scenario k (where k = 0 denotes
the first stage). Edges in Ek ∩ E0 may be covered in either the first or second
stage, while edges in Ek \E0 must be covered in the second stage. Observe that
a 4-approximation can be easily obtained by rounding IPSV C [15]. We obtain a
tighter approximation ratio using a primal-dual algorithm.

min c0x0 +
∑m

k=1 pkckxk (IPSV C)

s.t. x0
u + x0

v + xk
u + xk

v ≥ 1 ∀uv ∈ Ek ∩ E0, ∀k

xk
u + xk

v ≥ 1 ∀uv ∈ Ek \ E0, ∀k
x non-neg. integers

Dual Program The dual of the linear relaxation of IPSV C is shown below.
Variable yk

e packs edge e in Ek if e ∈ Ek, and it packs e ∈ E0 if e ∈ Ek ∩ E0.

max
∑m

k=1

∑
u,v∈V yk

uv (DPSV C)

s.t.
∑

e∈Ek:v∈e yk
e ≤ pkck

v ∀v, ∀k
∑m

k=1

∑
e∈E0∩Ek:v∈e yk

e ≤ c0
v ∀v

y ≥ 0

Hedging Uncertainty 105

Algorithm The algorithm is a greedy dual-ascent type of primal-dual algo-
rithm, with two phases. In Phase I, we raise the dual variables yk

e uniformly
for all edges in Ek \ E0, separately for each k from 1 to m. All vertices which
become tight (have the first dual constraint packed to pkck

v) have xk
v set to 1,

and are deleted along with adjacent edges. We proceed this way until all edges
in Ek \ E0 are covered and deleted.

In Phase II, we do a greedy dual-ascent on all uncovered edges of Ek, which
are contained in Ek ∩E0. We raise yk

e for all uncovered edges for k = 0 to m. We
use a slightly different rule for purchasing vertices: If a vertex is tight for x0

v (i.e.,
second dual constraint packed to c0

v), then we select it in the stage 1 solution by
setting x0

v = 1, and if it is not tight for x0 but is tight for xk (packed in the first
dual constraint), then we select it in the recourse solution and set xk

v = 1.

Theorem 1. The integer program IPSV C can be rounded by the primal-dual
algorithm described above within a factor of 2 in polynomial time.

Proof. Consider an edge e = uv in scenario k. We must have selected one of its
two end-points in either Phase I or Phase II (or both), so the algorithm yields a
feasible solution. We use linear programming duality to bound the cost of the so-
lution by showing that the cost of our solution is no more than 2

∑
k

∑
u,v∈V yk

uv,
where y is the dual solution constructed by our algorithm. Each time we set an
xk

v variable to 1, we assign some dual variables to it such that (i) the sum of
dual variables assigned to each such xk

v variable equals pkck (where p0 = 1), and
(ii) each dual variable is assigned at most twice.

Consider a vertex v which was selected (ie, xk
v was set to 1) in scenario k

in either Phase I or Phase II. We assign all dual variables yk
e such that v is an

end point of e to this vertex, and since v is selected only when the constraint∑
e∈Ek:v∈e yk

e ≤ pkck
v goes tight, we maintain (i). An edge e in Ek \E0 is assigned

to a vertex v only if xk
v is set to 1 for k �= 0, and since an edge has at most 2

end-points, we ensure (ii) for edges in Ek.
Next consider a vertex v for which we set x0

v to 1. Therefore, the constraint∑
l

∑
e∈E0∩Ek:v∈e yk

e ≤ c0
v must have gone tight, and all edges in the sum are

assigned to the variable x0
v. This assignment once again ensures (i). This assign-

ment only includes edges in E0 ∩ Ek, and these edges are not assigned to any
variable xk

v for k �= 0, thus also ensuring (ii) for all edges in E0 ∩ Ek.
These two cases cover all the possibilities, thus proving the theorem.

4 Facility Location

As in the classical uncapacitated facility location problem, we are given a set
of facilities F and a set of clients D, with a metric cij specifying the distances
between every client and every facility. However, the demand of each client is
not known at the first stage. In scenario k, client j has demand dk

j , which may
be zero. Facility i has a first-stage opening cost of f0

i , and recourse costs of fk
i

in scenario k. These may be infinity, reflecting the unavailability of the facilities
in various scenarios. We abbreviate this problem as SFL.

106 R. Ravi and A. Sinha

min
∑

i∈F

fiy
0
i +

m∑

k=1

pk

(∑

i∈F

fk
i yk

i +
∑

i∈F,j∈D

dk
j cijx

k
ij

)
(IPSFL)

s.t.
∑

i∈F

xk
ij ≥ dk

j ∀j ∈ D, ∀k

xk
ij ≤ y0

i + yk
i ∀i ∈ F, ∀j ∈ D, ∀k

x, y non-negative integers

The problem is best explained by the IP formulation IPSFL above. While
our algorithm extends to arbitrary demands, for simplicity we only study the
case when all dk

j ’s are either 0 or 1. Variable xk
ij is 1 if and only if client j is

served by facility i in scenario k. If xk
ij = 1, then facility i must either be opened

at the first stage (y0
i = 1) or in recourse in scenario k (yk

i = 1) (or both).

History and Non-triviality of the Problem The classical (determinis-
tic) uncapacitated facility location problem has a rich history (see Cornuéjols,
Nemhauser and Wolsey [6] for a survey). Balinski [3] introduced an integer pro-
gramming formulation for this problem which has led to several approximation
algorithms. The first constant factor approximation using this formulation is
due to Shmoys, Tardos and Aardal [31], and the current best algorithm, due
to Mahdian, Ye and Zhang [25] uses a formulation which differs only slightly.
Indeed, our formulation (IPSFL) extends Balinski’s formulation to the stochas-
tic setting. In the stochastic optimization community, Louveaux and Peeters [23]
considered a slightly different version of stochastic facility location, and provided
a dual-ascent based exact (non-polynomial time) algorithm for it.

Notice that if the second stage facility costs were identical to those in the first
stage for all scenarios, then we can “de-couple” the stochastic components of the
problem and solve for each scenario independently. On the other hand, if there
was no second stage and all facilities had to be opened in the first stage, then
SFL reduces to an instance of the usual UFL, where the probability multipliers in
the expected service costs can be incorporated into the demand terms (thinking
of the demands as being scaled based on the probability of occurrence); in this
case, existing approximations for UFL apply directly.

The added difficulty, and indeed the interesting aspect of the model, arises
from varying (and typically increased) second-stage facility costs under different
scenarios. We cannot treat each scenario by itself, since the different scenarios
interact in utilizing first-stage facilities. Our algorithm has to carefully balance
the effects of the two stages in deciding what facilities to open.

Algorithm Our approximation algorithm proceeds along the lines of the LP-
rounding algorithm of Shmoys, Tardos and Aardal [31], with some crucial differ-
ences. We begin by solving the linear relaxation of IPSFL. Let (x, y) denote an
optimal LP solution. The first step in rounding this fractional solution is using
the filtering technique of Lin and Vitter [22]. We fix a constant 0 < α < 1. For
every client-scenario pair (j, k), we define its optimal fractional service cost to
be c∗jk =

∑
i cijx

k
ij . Order the facilities which serve the pair (j, k) according to

non-decreasing distance from j. The α point gj,k(α) for the client-scenario pair

Hedging Uncertainty 107

(j, k) is the smallest distance cα
jk such that

∑
i:cij≤cα

jk
xk

ij ≥ α. The following
theorem was also proved in [31].

Theorem 2. Given a feasible fractional solution (x, y), we can find a fractional
solution (x, y) which is feasible for the LP relaxation of IPSFL in polynomial
time such that (i) cα

jk ≤ 1
1−αc∗jk; (ii) xk

ij > 0 ⇒ cij ≤ cα
jk for all i ∈ F , j ∈

D, k = 1, 2, . . . , m; (iii) yk
i ≤ min{1,

yk
i

α } for all i ∈ F , k = 0, 1, . . . , m.

Proof. First, if cα
jk > 1

1−αc∗jk, then we get the following contradiction (as an
application of Markov’s inequality): c∗jk ≥ α.0 + (1 − α)cα

jk > c∗jk, proving (i).
Next, define x as follows, which satisfies (ii) by definition:

xk
ij =

{
min{1, 1

α}xk
ij if cij ≤ cα

jk

0 otherwise

Furthermore, define yk
i = minj∈D xk

ij . Using (i) and the definition of x, it

follows that yk
i ≤ min{1,

yk
i

α } for all i ∈ F , satisfying (iii). The definitions also
ensure that (x, y) is a feasible solution to the LP relaxation of IPSFL.

The algorithm of Shmoys, Tardos and Aardal [31] iteratively rounds xk
ij vari-

ables for which cα
jk is smallest. This does not work in our case, because the

rounding algorithm might close facilities which are needed for other scenarios
k′ �= k. Hence we need a rounding algorithm which carefully treats the distinc-
tion between stage 1 facility variables y0, and recourse facility variables yk.

We proceed as in earlier algorithms by obtaining an optimal LP solution; In
the next step, we progressively choose clients across all scenarios with minimum
fractional service cost, and neglect to serve other clients conflicting (overlapping
in facility utilization) with it by assigning them to be served by this client’s
serving facility. The main difference is that if a stage 1 facility is opened to
serve a client, all clients that conflict with it can be served, while if a stage
2 facility variable is rounded up to serve this client, only those clients in the
same scenario that conflict with this client are neglected and assigned to this
client. This strategy suffices to pay for all opened facilities by the “disjointness”
of the different scenarios’ contributions in the objective function, while the rule
of considering clients in increasing order of fractional service cost allows us to
bound the service cost. Our rounding algorithm is described in detail below. Let
0 < β < 1 be another fixed constant.

1. Initialize F̂ k = ∅ to be the set of facilities opened in scenario k for k =
0, 1, . . . , m. Mark all client-scenario pairs as “unserved”.

2. Let (j, k) be an unserved client-scenario pair with smallest cα
jk. Consider

the following cases, in each case marking (j, k) as “served” and proceeding
to the next client-scenario pair. Let S0 be the set of facilities i such that
xk

ij > 0∧ y0
i > 0, and Sk be the set of facilities i such that xk

ij > 0∧ yk
i > 0.

(a) If
∑

i∈S0 y0
i ≥ β, let i be the facility such that f0

i is smallest among all
facilities in S0. Move facility i to the set F̂ 0, and set ŷ0

i = 1. For all

108 R. Ravi and A. Sinha

other facilities i′ ∈ S0 ∪ Sk, set ŷ0
i′ = ŷk

i′ = 0. For client-scenario pairs
(j′, k′) such that there exists a facility i′ ∈ S0 ∪ Sk with ci′j′ ≤ cα

j′k′ , set
x̂k′

ij′ = 1 and mark them as “served”.
(b) If

∑
i:i∈S0 y0

i < β, then we must have
∑

i:cij≤cα
jk

yk
i ≥ 1− β. In this case,

let i be the facility in Sk with smallest fk
i . Move facility i to the set F̂ k

and set ŷk
i = 1. For all other facilities i′ ∈ Sk, set ŷk

i′ = 0. For clients j′

such that there exists a facility i′ ∈ Sk with ci′j′ ≤ cα
j′k, set x̂k

ij′ = 1 and
mark them as “served”.

3. Facilities in F̂ 0 are the facilities to be opened in stage 1, and facilities in F̂ k

are the facilities to be opened in recourse if scenario k materializes. Clients
are served according to the zero-one variables x̂k

ij .

Lemma 1. The rounding algorithm above produces an integer solution (x̂, ŷ)
which is feasible for IPSFL such that (i) For every client-scenario pair (j, k), we
have x̂k

ij = 1 ⇒ cij ≤ 3cα
jk. (ii)

∑
i∈F f0

i ŷ0
i ≤ 1

β

∑
i∈F f0

i y0
i . (iii)

∑
i∈F fk

i ŷk
i ≤

1
1−β

∑
i∈F fk

i yk
i for all k = 1, 2, . . . , m.

Proof. When a client is assigned to a facility (ie, x̂k
ij is set to 1), we either assign

it to a facility within distance cα
jk, or it is assigned when some other client j′ with

cα
j′k ≤ cα

jk was being considered. In either case, a simple application of triangle
inequality yields cij ≤ 3cα

jk.
When a facility i is chosen for opening in the first stage (ie, ŷ0

i is set to 1),
case 2(a) must have occurred. In that case, we have a sufficiently large fraction
(β) of facilities which have y0

i > 0 which we are shutting, and we can charge
the cost of opening i to the fractional solution. A similar argument holds for the
case when a facility is opened in recourse in scenario k.

The solution produced is also feasible, because we start with a feasible solu-
tion (x, y), and in each step, we maintain feasibility by ensuring that a client-
scenario pair is marked “served” only when its xk

ij variable is set to 1 (ie, it is
assigned to a facility) for some facility i.

Theorem 3. There is a polynomial time approximation algorithm with perfor-
mance ratio 8 for SFL.

Proof. Setting α = 1
4 and β = 1

2 , along with Theorem 2 and Lemma 1, yields
the performance guarantee.

Extensions The algorithm easily extends to allowing demands at client-scenario
pairs which are non-negative real numbers instead of just 0 or 1. We may also
allow the costs to transport one unit of demand per unit length in different
scenarios to be different. In other words, each scenario has a multiplier γk such
that the distance between i and j in scenario k is γkcij . Essentially, this can be
incorporated into the demand variables dk

j . Recently, Mahdian [24] developed an
approximation algorithm for SFL with approximation ratio 3, by extending the
ideas of Jain and Vazirani [16].

Hedging Uncertainty 109

5 Shortest Paths

Motivation Consider a supplier who wishes to ship a single unit of a good to a
single destination t from a single source s, in a graph where the shipping cost is
just the cost of the edge. The solution to this problem is to compute a shortest
path from s to t, and this can be easily done in polynomial time, for example
by using the algorithm due to Dijkstra [7].

5.1 Stochastic Sink

Now consider the case when the supplier does not know the destination in ad-
vance. In particular, any of m scenarios could materialize, with the destination
being tk in scenario k. The supplier wishes to reserve some edges now at cost
ce, and augment the network in the second stage (when edges may be more
expensive) after the revelation of the actual destination.

Problem Definition We are given a graph G = (V, E), with metric edge costs
ce and a single source s ∈ V . We also have a set of m scenarios, with scenario k
specified by a destination vertex tk ∈ V , a cost scale factor fk, and a probability
pk. A feasible solution is specified by a set of edges E′ ⊂ E. The first-stage cost of
this solution is

∑
e∈E′ ce, and in scenario k, a second stage solution is a path Pk

from s to tk; for the second stage costs, we assume the edges in Pk bought in the
first stage, namely in E′, have cost zero, while the remaining edges are increased
in cost by factor fk, giving second-stage cost fk

∑
e∈Pk\E′ ce. The objective is

to compute E′ which minimizes the sum of first stage edge costs and expected
second stage edge costs. We abbreviate this problem as SSP (stochastic shortest
paths). While it is not obvious that E′ even induces a connected component, the
following lemma proves that E′ is indeed connected; in fact, it is a tree.

Lemma 2. The set of edges E′ bought in the first stage in an optimal solution
to SSP induces a tree containing the source s.

Proof. Suppose for a contradiction there is another connected component C �� s.
Let K ′ be the set of scenarios for which the optimal solution uses at least one
edge in C, and let Es be the connected component of first-stage edges which
include the source s. For optimality, it must be the case that for every edge
e ∈ C, we have

∑
Pk�e pkfk ≥ 1, implying that

∑
k∈K′ fk ≥ 1.

Now consider the paths used in the scenarios in K ′. Let k0 be the scenario in
which the second-stage cost of the segment from C to the source is the cheapest.
If we re-route the paths of all scenarios in K ′ to using the path to using the path
of k0 from the point the other scenario paths intersect C, then since

∑
k∈K′ fk ≥

1, the total cost cannot increase. Therefore, we can purchase these edges (which
we used for re-routing), and this does not increase the cost.

Proceeding this way for other components, we infer that E∗ induces a con-
nected graph containing s, which need be no more than a tree since the second
stage solutions only look for a single path to s.

110 R. Ravi and A. Sinha

Interpretation as a Network Design Problem Armed with the above
lemma, SSP can be interpreted as the tree-star network design problem, defined
as follows. In tree-star network design, demand nodes have a demand for dj

units of goods to be shipped to a source. A feasible solution is specified by a
tree, with the cost of the solution being M times the cost of the tree (for pre-
specified M) plus the length of the shortest path from each demand node to
the tree, weighted by the demand at the node. A constant-factor approximation
algorithm for this problem was first provided by Ravi and Salman [29], and it
has also been studied subsequently as the connected facility location problem
[18,21], and the asymmetric VPN design problem [11].

Theorem 4. There is a polynomial-time constant-factor approximation algo-
rithm for SSP.

Proof. SSP is equivalent to the tree-star network design problem, via the fol-
lowing transformation. The fixed cost multiplier of the tree M is set to 1. The
demand of each node tk is set to fkpk. Now purchasing a tree T in stage 1 for
SSP is equivalent to building T in the tree-star problem. The expected second
stage cost is exactly

∑m
k=1 pkfkdist(tk, T), which is the same as incurred in the

tree-star problem when the demand at node tk is pkfk.

The equivalence of SSP and tree-star network design also implies the NP-
hardness of SSP. The best-known approximation ratio for tree-star network de-
sign is 5, due to Kumar and Swamy [21]. This implies an approximation algo-
rithm with the same performance ratio for stochastic sink shortest paths.

5.2 Stochastic Metric and Sink

The problem becomes even more interesting (and harder) when the metric itself
is allowed to change arbitrarily across scenarios. This might happen, for exam-
ple, because shipping by sea becomes much cheaper than air transport in one
scenario, and vice-versa in another. The problem is defined exactly as in Section
5, except that the cost of edge e in the first stage is c0

e and in scenario k is ck
e .

We call this the stochastic metric shortest paths (SMSP) problem.
In general, the first-stage component of an optimal solution for SMSP need

not be a tree. Consider the following example, where there is only one second-
stage scenario. The graph is a path with five vertices s = v0, . . . , v4 = t, where
s and t are the source and the sink respectively. Let M be a large constant.
The costs of the four edges (v0, v1), . . . , (v3, v4) in the first stage are respectively
1, M, 1, M , and in the second stage are M, 1, M, 1. The optimal solution is clearly
to purchase edges (v0, v1) and (v2, v3) in the first stage, and the others in the
second stage; this solution has cost 4. Any solution which requires the first stage
to be a tree has cost at least M .

Hardness Even with the restriction that the first stage set of edges form a
tree, SMSP is as hard as the group Steiner tree problem (GST), defined as
follows. G = (V, E) is an undirected graph with edge weights ce, and there are

Hedging Uncertainty 111

m vertex subsets (called groups) Sk. The objective is to compute a minimum
cost tree which includes at least one vertex from every group. This problem
was studied by Garg, Konjevod and Ravi [9] who also gave an approximation
algorithm with performance ratio roughly O(log2 n log m), and recently Halperin
and Krauthgamer [13] showed an inapproximability threshold of Ω(log2 n) even
when G is a tree. For the rest of this section, we consider the restriction of
SMSP where the first stage solution has to be a tree, which we dub Tree-SMSP.
An Ω(log2 n) hardness for Tree-SMSP follows from the reduction of GST to
Tree-SMSP, shown below.

Theorem 5. A GST instance can be modeled as a special case of Tree-SMSP.

Proof. Suppose we are given an instance of group Steiner tree, specified by G =
(V, E), metric edge costs c, and groups S1, S2, . . . , Sm. We create an instance of
SMSP with one scenario for every group. The graph remains the same, and the
first stage edge costs c0 are the same as c, the edge costs in the GST instance.
In scenario k, the metric is as follows. The distance between any two vertices in
Sk is zero, and all other distances are infinity. Any vertex in Sk is defined to be
the destination tk for scenario k. All scenarios are equally likely.

An optimal solution to this instance of Tree-SMSP must select a first stage
tree which includes at least one vertex from each Sk, to avoid infinite cost. If the
tree includes any vertex in Sk, it can be augmented at cost zero to a tree which
includes tk if scenario k materializes.

Approximation Algorithm Our approximation algorithm relies on the fol-
lowing IP formulation of Tree-SMSP. Variable rk

uv is 1 if edge (u, v) (in the
direction u → v) is part of the path traversed from tk to s and edge (u, v) is
chosen in the recourse solution. Variable fk

uv is 1 if edge (u, v) is chosen in the
path from tk to s and edge (u, v) is part of the first-stage solution. Variable xuv

is 1 if edge (u, v) is chosen in the first-stage tree.

min
∑

e cexe +
∑m

k=1 pk

∑
e rk

e ck
e (IPSMSP)

s.t.
∑

v(rk
tk,v + fk

tk,v) ≥ 1 ∀k∑
v(r

k
uv + fk

uv) =
∑

v(rk
vu + fk

vu) ∀u ∈ V \ {tk, s}, ∀k∑
v rk

uv ≤ ∑
v rk

vu ∀u ∈ V \ {tk}, ∀k
fk

e ≤ xe ∀e ∈ E, ∀k
f, r, x non-neg. integers

The third set of inequalities are strengthenings valid only for the tree ver-
sion of SMSP, insisting that flows along recourse arcs from tk to s via any node
are non-increasing; they are also crucial for obtaining the result below. IPSMSP

is polynomial in size, so its linear relaxation LPSMSP can be solved optimally
in polynomial time. Let (f, r, x) denote an optimal solution to the linear pro-
gram LPSMSP , and OPTSMSP be its value. The following theorem describes
our rounding algorithm.

112 R. Ravi and A. Sinha

Theorem 6. The fractional solution (f, r, x) can be rounded in polynomial time
to an integer solution (f̂ , r̂, x̂) of cost O(log2 n logm)OPTTree−SMSP .

Proof. For each destination tk, let r∗(k) =
∑

e rk
e ck

e be the cost incurred by the
recourse component of the fractional path for tk. Let Sk be the set of all nodes
within distance 2r∗(k) of tk in the metric ck. The idea is that we can incur a
factor of 2 and pay for a path from tk to any node in Sk by charging it to r∗(k),
and hence we need a first stage tree which reaches at least one node in Sk. We
construct sets Sk for every scenario k, and create an instance of the group Steiner
tree problem using the metric c.

Using Markov’s inequality, if s /∈ Sk, we have
∑

e=(u,v):u∈Sk,v/∈Sk
xe ≥ 1

2 .
Hence 2x is a solution to the LP relaxation of the following IP formulation of
the group Steiner tree problem: min

∑
e cexe such that

∑
e=(u,v):u∈S,v/∈S xe ≥

1 ∀S ∃k : Sk ⊆ S. Using the result of Garg, Konjevod and Ravi [9], we can
construct an integer tree solution x̂ at a cost O(log2 n log m · OPTSMSP) which
includes at least one vertex of every Sk. Since for every scenario k we can augment
this tree to include tk at cost at most 2r∗(k), our approximation ratio follows.

6 Stochastic Bin Packing

Stochastic bin packing is motivated by applications where storage capacity has
to be reserved in advance of the arrival of the objects, and if the reserved capacity
is insufficient, we have to purchase additional capacity at possibly higher costs.
Formally, we are given a bin capacity B, known in advance. There is a set of m
possible scenarios, with scenario k specified by a probability pk of occurrence, a
set Sk of objects (each with size sk

i ≤ B), and a bin cost fk. A feasible solution
is specified by a number x of bins purchased in stage 1, at unit cost per bin. If
scenario k materializes, the objects in Sk need to be packed into bins of capacity
B, which may necessitate the purchase of an additional number of bins at cost
fk per bin. The objective is to compute x so as to minimize the expected total
cost. Let [x] denote the integer nearest to x.

Let ρ denote the approximation ratio of the best approximation algorithm for
the bin-packing problem. Any locally optimal algorithm (first-fit, for example)
achieves ρ = 2. An asymptotic PTAS was given by Fernandez de la Vega and
Lueker [8], which uses at most (1+2ε)OPT +1 bins. The following theorem shows
how to extend any bin-packing algorithm to handle stochastic bin-packing.

Theorem 7. Order the scenarios so that we have
∑

i s1
i ≥ ∑

i s2
i ≥ . . . ≥

∑
i sm

i . Let k∗ be the largest integer such that
∑k∗

k=1 fkpk ≥ 1. Then x =
[ρ

∑
i sk∗

i] is an asymptotic ρ-approximate solution.

Proof. Consider the fractional relaxation of the problem, when we can pack
items fractionally into bins. In that case, x∗ = [

∑
i sk∗

i] is the optimal solution,
because it is the point where the expected marginal cost of buying an additional
bin in recourse goes below 1. The expected total cost if we purchase x∗ bins

Hedging Uncertainty 113

is x∗ +
∑

k>k∗ pkfk(�∑i sk
i � − x∗), which is a lower bound on the value of an

optimal solution of stochastic bin packing.
Since �ρ ∑

i sk
i � bins are asymptotically sufficient to pack the objects in Sk,

we will need to purchase at most �ρ ∑
i sk

i � − ρx∗ additional bins if scenario
k > k∗ materializes. If scenario k ≤ k∗ is realized, then ρx∗ bins are sufficient
and no additional bins are needed. Hence the expected cost of our solution is
ρx∗ +

∑
k>k∗ pkfk(�ρ ∑

i sk
i � − ρx∗), which is asymptotically no more than ρ

times our lower bound.

7 Stochastic Set Cover

The input in the stochastic set cover problem consists of a universe U of |U | = n
elements, and a collection S of subsets of U . Each set S ∈ S has a stage 1
cost c0

S and a cost of ck
S in scenario k, some of which might be infinity. Each

element u ∈ U has a demand vector du with the kth component dk
u being 1 if

it is required to cover u in scenario k, and 0 otherwise. A feasible solution is a
collection S′ ⊆ S, with stage 1 cost

∑
S∈S′ c0

S . If scenario k is realized, then S′

must be extended by with some more sets Sk to cover all elements with dk
u = 1.

The cost of this recourse solution is
∑

S∈Sk ck
S , incurred with probability pk.

Reduction to Classical Set Cover The deterministic version of set cover
was among the earliest NP-hard problems to be approximated, with a O(log n)
approximation was first provided by Johnson [17]. The problem was also shown
to be NP-hard to approximate better than a factor of Ω(log n) by Arora and
Sudan [1]. Given an instance of deterministic set cover, we can define an instance
of stochastic set cover by creating a distinct scenario for each element, and setting
all second-stage set costs to infinity. This implies an inapproximability threshold
of Ω(log m) for stochastic set cover too.

We show below that any instance of stochastic set cover with n elements can
be transformed to an instance of deterministic set cover with n(m+1) elements.
This means that there exists an O(log nm) = O(log n+log m) approximation for
stochastic set cover. The approximation ratio therefore matches the inapprox-
imability ratio upto constants. The reduction in Theorem 8 allows us to extend
the model to the following generalization, for which the same approximation
guarantee holds: In scenario k, each set Sk covers only a subset of the elements
that the first-stage set S covers.

Theorem 8. Any stochastic set cover problem is equivalent to a classical set
cover problem with mn elements and |S|(m + 1) sets.

Proof. Associate an element uk for every element-scenario pair (u, k) such that
dk

u = 1. Create m + 1 copies of every set S ∈ S. Set S0 contains all elements
uk for all k = 1, 2, . . . , m such that u ∈ S, while set Sk only contains uk for all
u ∈ S. Finally, the cost of S0 is c0

S and that of Sk is pkck
S . By construction, any

solution to the stochastic set cover instance yields a solution to the transformed
deterministic instance, and vice-versa.

114 R. Ravi and A. Sinha

8 Directions for Further Research

Much remains to be done on several classical problems for which algorithms in
the two-stage stochastic model are not known. Another direction of research is
to develop approximations for more complex models of stochastic optimization:
The extension of the two-stage model to multiple stages allows more detailed
modeling; the variant where uncertainty is modeled by a continuous distribution
is also often considered. It is our hope that these models will provide a rich
setting for the application of optimization in practice.

9 Acknowledgments

We would like to thank Nan Kong and Andrew Schaefer of the University of
Pittsburgh for several enlightening discussions leading to this work.

References

1. Arora, S., Sudan, M. Improved low degree testing and its applications. In Proceed-
ings of the 29th Annual ACM Symposium on Theory of Computing (1997) 485-495.

2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and
their Approximability Properties, Springer, Berlin, Germany (1999).

3. Balinski, M.L.: On finding integer solutions to linear programs. In Proc. IBM Sci-
entific Computing Symposium on Combinatorial Problems (1966) 225-248.

4. Birge, J., Louveaux, F.: Introduction to Stochastic Programming, Springer, Berlin
(1997).

5. Coffman Jr., E., Garey, M., Johnson, D.: Approximation algorithms for bin-packing:
a survey. In D.S. Hochbaum, Approximation Algorithms for NP-hard Problems,
PWS, Boston (1997).

6. Cornuéjols, G., Nemhauser, G., Wolsey, L.: The uncapacitated facility location prob-
lem. In P. Mirchandani and R. Francis, eds, Discrete Location Theory, Wiley, New
York (1990) 119-171.

7. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Math-
ematik 1 (1959) 269-271.

8. Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1 + ε in
linear time. Combinatorica 1 (1981) 349-355.

9. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for
the group Steiner tree problem. Journal of Algorithms 37(1) (2000) 66-84.

10. Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms.
In Proceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms (1998)
649-657.

11. Gupta, A., Kleinberg, J., Kumar, A., Rastogi, R., Yener, B.: Provisioning a virtual
private network: A network design problem for multicommodity flow. In Proceedings
of the 33rd Annual ACM Symposium on Theory of Computing (2001) 389-398.

12. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: Approximation algo-
rithms for stochastic optimization. Proceedings of the 36th, Annual ACM Symposium
on Theory of Computing (2004) (to appear).

Hedging Uncertainty 115

13. Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In Proceedings
of the 35rd Annual ACM Symposium on Theory of Computing (2003) 585-594.

14. H̊astad, J.: Some optimal inapproximability results. In Proceedings of the 29th

Annual ACM Symposium on Theory of Computing (1997) 1-10.
15. Immorlica, N., Karger, D., Minkoff, M., Mirrokni, V.: On the costs and benefits of

procrastination: Approximation algorithms for stochastic combinatorial optimization
problems. In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete
Algorithms (2004) 684-693.

16. Jain, K., Vazirani, V.: Primal-dual approximation algorithms for metric facility
location and k-median problems. In Proceedings of the 40th Annual IEEE Symposium
on Foundations of Computer Science (1999) 2-13.

17. Johnson, D.: Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences 9 (1974) 256-278.

18. Karger, D., Minkoff, M.: Building Steiner trees with incomplete global knowledge.
In Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer
Science (2000) 613-623.

19. Klein Haneveld, W.K., van der Vlerk, M.H.: Stochastic Programming, Dept. of
Econometrics and OR, University of Groningen, Netherlands (2003).

20. Kong, N., Schaefer, A.: A factor 1
2

approximation algorithm for a class of two-stage
stochastic mixed-integer programs. Manuscript, submitted to INFORMS Journal of
Computing (2003).

21. Kumar, A., Swamy, C.: Primal-dual algorithms for connected facility location prob-
lems. In Approximation Algorithms for Combinatorial Optimization (2002) 256-270.

22. Lin, J-H., Vitter, J.: ε-approximations with minimum packing constraint violation.
In Proceedings of the 24th Annual ACM Symposium on Theory of Computing (1992)
771-782.

23. Louveaux, F., Peeters, D.: A dual-based procedure for stochastic facility location.
Operations Research 40 (1992) 564-573.

24. Mahdian, M.: Personal communication (2003).
25. Mahdian, M., Ye, Y., Zhang, J.: A 1.52 approximation algorithm for the unca-

pacitated facility location problem. In Approximation Algorithms for Combinatorial
Optimization (2002) 229-242.

26. Möhring, R., Schulz, A., Uetz, M.: Approximation in stochastic scheduling: The
power of LP-based priority policies. Journal of the ACM 46(6) (1999) 924-942.

27. Monien, B., Speckenmeyer, E.: Ramsey numbers and an approximation algorithm
for the vertex cover problem. Acta Informatica 22 (1985) 115-123.

28. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. Journal of Computer Systems and Sciences 43 (1991) 425-440.

29. Ravi, R., F.S. Salman, F.S.: Approximation algorithms for the traveling purchaser
problem and its variants in network design. In European Symposium on Algorithms
(1999) 29-40.

30. Schultz, R., Stougie, L., van der Vlerk, M.H.: Two-stage stochastic integer pro-
gramming: A survey. Statist. Neerlandica 50(3) (1996) 404-416.

31. Shmoys, D., Tardos, E., Aardal, K.: Approximation algorithms for facility location
problems. In Proceedings of the 29th ACM Symposium on Theory of Computing
(1997) 265-274.

32. Skutella, M., Uetz, M.: Scheduling precedence-constrained jobs with stochastic
processing times on parallel machines. In Proceedings of the 12th Annual ACM-SIAM
Symposium on Discrete Algorithms (2001) 589-590.

33. Vazirani, V.: Approximation Algorithms, Springer, Berlin, Germany (2001).

	Introduction
	Background
	Vertex Cover
	Facility Location
	Shortest Paths
	Stochastic Bin Packing
	Stochastic Set Cover
	Directions for Further Research
	Acknowledgments

