
Operations Research Letters 29 (2001) 31–40
www.elsevier.com/locate/dsw

The robust spanning tree problemwith interval data
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Abstract

Motivated by telecommunications applications we investigate the minimum spanning tree problem where edge costs are
interval numbers. Since minimum spanning trees depend on the realization of the edge costs, we de5ne the robust spanning
tree problem to hedge against the worst case contingency, and present a mixed integer programming formulation of the
problem. We also de5ne some useful optimality concepts, and present characterizations for these entities leading to polynomial
time recognition algorithms. These entities are then used to preprocess a given graph with interval data prior to the solution
of the robust spanning tree problem. Computational results show that these preprocessing procedures are quite e9ective in
reducing the time to compute a robust spanning tree. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The purpose of this paper is to introduce the robust
version of the minimum spanning tree problem where
edge costs (lengths) are speci5ed as interval numbers.
Each edge cost can take any value in its interval, in-
dependent of the other edge costs. Under the above
speci5cation of the data, we propose to compute a ro-
bust spanning tree, i.e., a spanning tree whose total
cost minimizes the maximum deviation from the op-
timal spanning tree over all realizations of the edge
costs. Our study is motivated by two applications in the
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telecommunications industry. Consider, for instance,
the design of a communication network where routing
delays on links are not known with certainty due to the
time varying nature of the traGc load on the network.
In this application, it is desirable to develop a network
con5guration that hedges against the worst possible
contingency in terms of routing delays [4]. A second
application arises when a supervisor node in a data
network wants to send a control message to all other
nodes in the network where transmission lines are sub-
ject to uncertain delays [3]. Then, the supervisor node
may want to use a robust spanning tree to broadcast
the message to all nodes while hedging against the
worst possible delay. The combination of interval un-
certainty with robustness is attractive in three respects:
(1) we do not have to specify a distribution for the
data, nor its moments, which is not always easy, (2)
although the complexity status of the problem is open
we can formulate the robust spanning tree problem as
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a mixed integer linear program that can be solved by
o9-the-shelf software as demonstrated in Section 3.5,
and (3) the interval uncertainty allows us to derive
properties of the robust spanning tree that we use to
our advantage as a preprocessor to reduce signi5cantly
the solution time of the mixed integer program.
Our study is not the 5rst to consider a robust ver-

sion of the minimum spanning tree problem. Kozina
and Perepelista [5] have studied the minimum span-
ning tree problem with interval edge costs. They have
de5ned a relation order on the set of feasible solutions
and generated a Pareto set. Kouvelis and Yu [4] have
studied the robust spanning tree problem for prob-
lems where edge costs assume values in a certain sce-
nario set. They prove that the problem is NP-hard for
bounded number of scenarios, and strongly NP-hard
for unbounded number of scenarios.
On the other hand, the concept of robustness

was studied by Mulvey et al. [7], and Ben-Tal and
Nemirovski [2]. Mulvey et al. use a scenario based
approach for modeling uncertainty. They use penalty
functions to develop robust models to hedge against
the worst possible scenario. Under a minimax penalty
function, our approach would be similar to the Mulvey
et al. approach with the important di9erence that we
refrain from the use of scenarios which we 5nd hard
to specify. The approach of Ben-Tal and Nemirovski
is based on specifying the uncertainty in a certain
ellipsoidal set, and de5ning a robust counterpart prob-
lem. This approach would lead to the speci5cation of
a nonlinear 0–1 program in the case of the spanning
tree problem, and hence, would be computationally
much less practical. A similar remark holds in our
case for the use of stochastic programming [8]. Here,
we would be in need of specifying a probability dis-
tribution, and converting the problem to optimization
of expected value (or quantiles) of the objective. This
approach would again lead to a possibly nonlinear
0–1 program, which we avoid in our present approach.
Next, we establish the notation used in the sequel.

Let G=(V; E) be an undirected graph with n nodes
andm edges. Each edge e= {i; j} has cost ce ∈ [ce; Oce ].
No probability distribution is assumed for edge costs.
We use cse to denote the cost of edge e in scenario
s. We denote by ce an arbitrary cost for edge e in
[ce; Oce ]. A spanning tree is a set T ⊆ E such that for all
i∈V there exists j∈V with {i; j}∈T and such that
the subgraph (V; T ) is acyclic. Let � denote the set

of all spanning trees. We denote the cost of spanning
tree T under scenario s by csT =

∑
e∈T c

s
e. We use cT

to denote the cost of spanning tree T when the costs
of all edges on this tree are at lower bounds and OcT
denotes the cost of spanning tree T when the costs of
all edges on this tree are at upper bounds.
The rest of the paper is organized as follows.

In Section 2, we de5ne the concepts of weak edge
and strong edge used to preprocess the graph ef-
5ciently prior to solution of the robust spanning
tree problem by mixed-integer programming. Weak
and strong edges are characterized in such a way
that they can be easily (polynomially) identi5ed. In
Section 3, we de5ne the robust spanning tree prob-
lem, discuss its properties and relation to strong
and weak edges. More speci5cally, it is shown
that robust spanning trees must consist entirely of
weak edges, and that there exists a robust spanning
tree which uses every strong edge in the graph.
A mixed-integer programming formulation for the
solution of the robust spanning tree problem is
given. We preprocess the mixed integer program
by removing from the graph edges which are not
weak and by forcing strong edges into the solu-
tion. We also report our computational experience
in this section. Concluding remarks are given in
Section 4.

2. Weak and strong edges

In this section we analyze the problems of deciding
whether a given edge is always on a minimum span-
ning tree (strong edge), or whether a given edge is
never on a minimum spanning tree (non-weak edge)
and give characterizations to solve both problems in
polynomial time.

2.1. Weak edges and trees

We begin our analysis by a characterization of weak
trees, i.e., spanning trees that have minimum costs for
some realization of edge costs. Similar concepts are
proposed in [9] for location of problems.

De�nition 2.1. A spanning tree is a weak tree if it is
a minimum spanning tree for some realization of edge
costs.
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The following theorem characterizes weak trees.

Theorem 2.1. A spanning tree is a weak tree if and
only if it is a minimum spanning tree when the costs
of all edges on this tree are at their lower bounds and
the costs of the other edges are at their upper bounds.

Proof. If a spanning tree is minimum for the stated
realization of edge costs, it is a weak tree by de5nition.
If a spanning tree T is a weak tree then there exists

a scenario s for which csT 6 c
s
T ′ for all T

′ ∈�. Let c0T
be the cost realization

c0e =

{
ce; e∈T;
Oce; otherwise

for all e∈E and T ′ be an arbitrary spanning tree in �.
Then

csT =
∑
e∈T
cse6

∑
e∈T ′
cse= c

s
T ′

⇒
∑
e∈T\T ′

cse +
∑
e∈T∩T ′

cse6
∑
e∈T ′\T

cse +
∑
e∈T∩T ′

cse

⇒
∑
e∈T\T ′

cse6
∑
e∈T ′\T

cse

⇒
∑
e∈T\T ′

ce6
∑
e∈T ′\T

Oce

⇒
∑
e∈T\T ′

ce +
∑
e∈T∩T ′

ce6
∑
e∈T ′\T

Oce +
∑
e∈T∩T ′

ce

⇒
∑
e∈T
c0e6

∑
e∈T ′
c0e

⇒ c0T 6 c0T ′ :
Therefore, T is also a minimum spanning tree under

the scenario corresponding to the costs c0, as required.

De�nition 2.2. An edge is a weak edge if it lies on
some weak tree.

The following theorem gives a characterization of
weak edges.

Theorem 2.2. Edge e is a weak edge if and only if
there exists a minimum spanning tree using edge e

when the cost of edge e is at its lower bound and the
costs of the remaining edges are at upper bounds.

Proof. If there exists a minimum spanning tree that
uses edge e for the above scenario, then edge e is weak
by de5nition.
We prove the converse by showing that if there does

not exist a minimum spanning tree using edge e for
the stated scenario, then edge e cannot be weak. Con-
sider Kruskal’s algorithm [1] which sorts all edges in
non-decreasing order of their costs, and de5nesL, the
set of edges chosen to form a minimum spanning tree.
Kruskal’s algorithm proceeds as follows. Initially, the
set L is empty. The algorithm examines each edge
in the sorted order in turn and checks whether adding
the current edge to the set L creates a cycle with the
edges already in L. If it does not, the current edge is
added to L, otherwise it is discarded. The algorithm
stops when there are n − 1 edges in L. In case of
ties in the sorted order, an edge may be chosen arbi-
trarily from amongst those with least cost: we mod-
ify Kruskal’s algorithm slightly by asking that in case
of ties, the algorithm favors edge e over other edges
to add to L. With this modi5cation, it can be shown
that if e is not on the minimum spanning tree found
by the algorithm for a particular scenario, then it is
not on any minimum spanning tree for that scenario.
Let s be the scenario with cost on edge e at its lower
bound and all other costs at their upper bounds. We
now show that if e is not on any minimum spanning
tree for costs cs, then it cannot be on any minimum
spanning tree under any scenario, and so it must be
that edge e is not weak. Let Ls

′
denote the minimum

spanning tree returned by the algorithm applied to the
graph under scenario s′, i.e. with edge costs cs

′
. If e is

not on any minimum spanning tree for costs cs, then
it is not on the minimum spanning tree found by the
algorithm for costs cs, so either |Ls| reaches n − 1
before e is encountered in the sorted order, or adding
edge e to Ls at the point it was encountered would
have introduced a cycle. In either case adding e to
Ls at the point it is encountered in the sorted order
would introduce a cycle. Let C denote the edges in
such a cycle. Now suppose there is a scenario s′ such
that e∈Ls

′
. Let D denote the set of edges e′ ∈C \ e

such that e′ 	∈ Ls′ . Clearly D 	= ∅ and C \ D ⊆ Ls.
For each edge e′ ∈D, since it was not added to Ls′ ,
it must be that e′ forms a cycle with edges already in
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Ls′ : let Ce′ denote the edges in such a cycle. Now
it is not hard to see that (C \ D) ∪ (

⋃
e′∈D Ce′ \ e′)

induces a cycle with all edges in the set Ls′ . This is
a contradiction, since Ls′ forms a tree, so e cannot
lie on a minimum spanning tree for scenario s′ found
by the algorithm, for any scenario s′. Furthermore, by
our modi5cation to Kruskal’s algorithm, we have that
e cannot lie on any minimum spanning tree under any
scenario s′, and hence e cannot be a weak edge.

As a corollary of this theorem, we can decide
whether a given edge e is weak in O(m logm) time.
All we have to do is to set the cost of edge e to
its lower bound, all other edge costs to their upper
bounds and apply Kruskal’s algorithm in a fashion
which will favor edge e as stated in the previous
proof. If the minimum spanning tree contains edge e
then it must be weak, otherwise it cannot be weak.

2.2. Strong edges

De�nition 2.3. An edge is a strong edge if it lies on
a minimum spanning tree for all realizations of edge
costs.

Below, we give a characterization for strong edges.
The proof is similar to that of Theorem 2.2, and, hence
is omitted.

Theorem 2.3. Edge e is a strong edge if and only if
there exists a minimum spanning tree using edge e
when the cost of edge e is at its upper bound and the
costs of the remaining edges are at lower bounds.

As in the case of weak edges we can recognize very
eGciently strong edges in a graph using an algorithm
similar to the one mentioned at the end of Section 2.1.

3. Robust trees

The purpose of this section is threefold. First, we
de5ne the concept of a “robust spanning tree”. We
de5ne two robustness measures, absolute robustness
and relative robustness for the minimum spanning tree
problem with interval edge costs, and characterize the
worst case scenarios for a given spanning tree for both
measures. Second, we propose a mixed integer pro-

gramming formulation to compute a robust spanning
tree. Finally, in Section 3.4 we relate the robust span-
ning tree to weak and strong edges to help preprocess
the graph prior to solution by a mixed integer pro-
gramming solver. Let S denote the set of all possible
scenarios.

3.1. Absolute robust trees

De�nition 3.1. Given a spanning tree T , an absolute
worst case scenario saT is a scenario in which the
cost of this spanning tree is the maximum. That is,
saT ∈ argmaxs∈S c

s
T .

It follows from this de5nition that in an absolute
worst case scenario for a given spanning tree the costs
of all edges of the spanning tree are 5xed at their
upper bounds and the costs of the remaining edges can
assume any value in their intervals.

De�nition 3.2. A spanning tree whose absolute worst
case scenario cost is minimum is called an absolute
robust spanning tree. So an absolute robust spanning
tree is given by Ta ∈ argminT∈�maxs∈S csT .

Consider the scenario in which all edge costs are
at their upper bounds. The set of minimum spanning
trees under this scenario is exactly the set of absolute
robust spanning trees. In particular, every absolute ro-
bust spanning tree is a weak tree. Kouvelis and Yu [4]
have studied the absolute robust spanning tree prob-
lem, where the scenario set is 5nite, and they have
shown that the absolute robust spanning tree problem
is NP-complete for bounded scenario set and strongly
NP-hard when the scenario set is unbounded. How-
ever, in view of the remarks and de5nitions made
above, the absolute robust spanning tree problem with
interval edge costs can be solved in polynomial time
by 5nding a minimum spanning tree when all edge
costs are at upper bounds.

3.2. Relative robust trees

De�nition 3.3. Given a spanning tree T , a relative
worst case scenario sT is a scenario in which the dif-
ference between the cost of the spanning tree T and
the cost of a minimum spanning tree is maximum.
That is, sT ∈ argmaxs∈S{csT − csT∗(s)}, where T ∗(s) is
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a minimum spanning tree for scenario s. We call the
di9erence dT = c

sT
T − csTT∗(sT ) the robust deviation for

spanning tree T .

De�nition 3.4. A spanning tree whose robust devia-
tion is minimum is called a relative robust spanning
tree. In other words, a relative robust spanning tree
T r ∈ argminT∈� dT .

The following proposition gives a relative worst
case scenario for a given spanning tree.

Proposition 3.1. The scenario in which the costs of
all edges on T are at upper bounds and the costs of
all other edges are at lower bounds is a relative worst
case scenario for spanning tree T .

Proof. Let dT be the robust deviation for spanning
tree T . Then

dT = c
sT
T − csTT∗(sT ) =

∑
e∈T\T∗(sT )

csTe −
∑

e∈T∗(sT )\T
csTe :

Let s be the scenario in which the costs of all edges
on T are at their upper bounds and the costs of the
remaining edges are at their lower bounds. Now,

dT 6
∑

e∈T\T∗(sT )
cse −

∑
e∈T∗(sT )\T

cse= c
s
T − csT∗(sT ):

Since csT∗(s)6 c
s
T∗(sT ), we get

dT 6 csT − csT∗(s):
As dT =maxs′∈S cs

′
T − cs′T∗(s′), we obtain dT = csT −

csT∗(s). Therefore, s is a relative worst case scenario
for spanning tree T .

Kouvelis and Yu [4] also proved that the relative
robust spanning tree problem is NP-complete for
bounded number of scenarios and is strongly NP-hard
with unbounded number of scenarios. They conjec-
ture that the problem with interval edge costs is also
NP-complete.

3.3. A mixed integer programming formulation

From this section onwards, we will refer to the rel-
ative robust spanning tree problem as the robust span-
ning tree problem for short. In [6], the minimum span-
ning tree problem is considered as a special version

of a network design problem: we wish to send Sow
between the nodes of the network and view the edge
variable xe as indicating whether or not we install the
edge e∈E to be available to carry any Sow. One such
Sow model as stated in [6] is the single commodity
model. In this model, one of the nodes, say node 1
serves as a source node. One unit of Sow must be sent
from this node to every other node. De5ne the arc set
A= {(i; j)∈V × V : {i; j}∈E}. Let fij denote the
Sow on arc (i; j). The model is

min
∑
e∈E
cexe

s:t:
∑

(i; j)∈A
fij −

∑
( j; i)∈A

fji=
{
n− 1 if i=1;
−1 ∀i∈V \ {1};

fij6 (n− 1)xij ∀{i; j}∈E;
fji6 (n− 1)xij ∀{i; j}∈E; (P1)∑
e∈E
xe= n− 1; f¿ 0;

xe ∈{0; 1} ∀e∈E:
Magnanti and Wolsey [6] point out that if we select
any node, say node 1, as the root node for any spanning
tree, then we can direct the edges of the tree so that the
path from the root node to any other node is directed
from the root to that node. To develop a model for this
directed version of the problem, the digraphD=(V; A)
is formed.
Using these concepts, the authors present another

formulation of the minimum spanning tree problem,
called the directed multicommodity Sow model. In
this model every node k 	= 1 de5nes a commodity: one
unit of commodity k originates at the root node 1 and
must be delivered to node k. Letting fkij be the Sow of
commodity k on arc (i; j), they formulated this model
as follows:

min
∑

{i; j}∈E
cij(yij + yji)

s:t:
∑

( j;1)∈A
fkj;1 −

∑
(1; j)∈A

fk1; j =− 1 ∀k ∈V \ {1};

∑
( j; i)∈A

fkj; i −
∑

(i; j)∈A
fki; j =0 ∀i; k ∈V \ {1}

and i 	= k; (P2)
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∑
( j; k)∈A

fkj;k −
∑

(k; j)∈A
fkk; j =1 ∀k ∈V \ {1};

fkij6yij ∀(i; j)∈A and ∀k ∈V \ {1};∑
(i; j)∈A

yij = n− 1;

f¿ 0 and y¿ 0:

In this model, the variable yij de5nes a capacity for
the Sow of each commodity on arc (i; j) only if that
arc is a member of the directed spanning tree de5ned
by the vector y. Notice that we do not impose the
constraints that yij’s are integer. This is due to the
result of Magnanti and Wolsey [6] where it is shown
that the feasible set of P2 has integer extreme points.
We shall use both formulations in our model to 5nd
a robust spanning tree. We shall use model (P1) to
characterize the edges on the robust spanning tree, and
the dual version of model (P2) to 5nd the cost of the
minimum spanning tree when the costs of all edges on
the robust tree are at upper bounds and the costs of all
remaining edges are at lower bounds. We replace the
Sow balance constraints by the equivalent inequality
constraints. Then, the dual LP of (P2) can be written
as follows:

max
∑
k∈V;k �=1

(�kk − �k1) + (n− 1)�

s:t: �kij¿�
k
j − �ki ∀(i; j)∈A and ∀k ∈V \ {1};∑

k �=1

�kij + �6 cij ∀{i; j}∈E; (D2)

∑
k �=1

�kji + �6 cij ∀{i; j}∈E;

�; �¿ 0 and � unrestricted;

where we have associated dual variables {�k1: k ∈V \
{1}}; {�ki : i; k ∈V \ {1} and i 	= k}; {�kk : k ∈V \
{1}}, {�kij: (i; j)∈A and k ∈V \ {1}} and � for each
set of the primal constraints, respectively.
Now, we are ready to give our robust tree formula-

tion:

min
∑
e∈E

Ocexe −
∑
k∈V;k �=1

(�kk − �k1)− (n− 1)�

s:t: �kij¿ �
k
j − �ki ∀(i; j)∈A ∀k ∈V \ {1};

∑
k �=1

�kij + �6 cij + ( Ocij − cij)xij ∀{i; j}∈E;

∑
k �=1

�kji + �6 cij + ( Ocij − cij)xij ∀{i; j}∈E;

∑
(i; j)∈A

fij −
∑

( j; i)∈A
fji=

{
n− 1 if i=1;
−1 ∀i∈V \ {1};

fij6 (n− 1)xij ∀{i; j}∈E; (R)
fji6 (n− 1)xij ∀{i; j}∈E;∑
e∈E
xe= n− 1;

f; �; �¿ 0 and � unrestricted;

xe ∈{0; 1} ∀e∈E:

The binary variables xe’s index the edges in the po-
tential robust tree,

∑
e∈E Ocexe is the cost of this tree

under a relative worst case scenario. For a given
0–1 vector x de5ning a spanning tree, the cost of edge
e can be expressed as ce + ( Oce − ce)xe. In particular,
this model looks for the spanning tree whose robust
deviation is the minimum.

3.4. Robust trees, weak edges and strong edges

As pointed out in Section 3.1, an absolute robust
spanning tree is a weak tree. Proposition 3.2 below
shows that a relative robust spanning tree is also a
weak tree. This result is instrumental in preprocessing
the graph before the search for the robust tree as it
implies that we can discard non-weak edges from the
graph.

Lemma 3.1. If spanning tree T is not the unique min-
imum spanning tree for the scenario ŝ with costs on
edges in T at their lower bounds and costs on edges
not in T at their upper bounds; then there exists a
tree T ′ 	=T such that csT ¿ c

s
T ′ for all scenarios s.

Furthermore; if T is not weak; csT ¿c
s
T ′ for all sce-

narios s.

Proof. If T is not the unique minimum spanning tree
for scenario ŝ, there exists a spanning tree T ′ 	=T
which is a minimum spanning tree for this scenario.
For any scenario s,
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csT − csT ′ =
∑
e∈T\T ′

cse −
∑
e∈T ′\T

cse

¿
∑
e∈T\T ′

ce −
∑
e∈T ′\T

Oce= cŝT − cŝT ′ :

Now by the de5nition of T ′; cŝT ¿ c
ŝ
T ′ and thus

csT ¿ c
s
T ′ as required. Furthermore, if T is not weak,

it must be that cŝT ¿c
ŝ
T ′ and so csT ¿c

s
T ′ for all

scenarios s.

Corollary 3.1. If T is the unique minimum spanning
tree under some scenario; then T is the unique min-
imum spanning tree for the scenario ŝ with costs on
edges in T at their lower bounds and costs on edges
not in T at their upper bounds.

Proposition 3.2. A relative robust spanning tree is a
weak tree.

Proof. Let T be a spanning tree which is not weak. By
Lemma 3.1, there exists a spanning tree T ′ 	=T such
that csT ¿c

s
T ′ for all scenarios s. Consider scenario s

′

which a relative worst case scenario for spanning tree
T ′. We have

dT ′ = cs
′
T ′ − cs

′
T∗(s′)¡c

s′
T − cs′T∗(s′)

6max
s∈S

{csT − csT∗(s)}=dT :
Therefore T cannot be a robust spanning tree.

In the remainder of this section our purpose is to
establish in Corollary 3.3 that there exists a relative
robust spanning tree that uses every strong edge in the
graph. To arrive at this conclusion we prove several in-
termediate results which, among other things, contain
a characterization of strong edges using the concept
of unionwise permanent sets that we de5ne below [9].
In the sequel we work with the following assumption
that is instrumental in the proof of Lemma 3.2.

Assumption 3.1. All edges have non-degenerate
costs; that is ce ¡ Oce for all e∈E.

Lemma 3.2. For any two distinct spanning trees T
and T ′; there exists a scenario s′ for which cs

′
T 	= cs

′
T ′ .

Proof. Pick the scenario s corresponding to edge
costs at their lower bounds. If csT = c

s
T ′ then pick an

edge e∈T \ T ′ and assign the corresponding cost
to its upper bound. Let s′ denote this scenario. Then
cs

′
T ¿c

s
T = c

s
T ′ = c

s′
T ′ .

De�nition 3.5. A set of spanning trees is a unionwise
permanent set if for each realization there exists a
minimum spanning tree in this set.

De�nition 3.6. A unionwise permanent set is a mini-
mal unionwise permanent set if it is no longer a union-
wise permanent set when a spanning tree is removed.

Lemma 3.3. If a spanning tree T is never the unique
minimum spanning tree; there exists a spanning tree
T ′ such that cT ¿ cT ′ for all scenarios and T ′ is the
unique minimum spanning tree for some scenario.

Proof. If T is not the unique minimum spanning
tree for any scenario, then by Lemma 3.1 there ex-
ists another spanning tree T1 	=T such that cT ¿ cT1
for all scenarios. If T1 is the unique minimum span-
ning tree for some scenario, we are done. Assume
not. Then there exists another spanning tree T2 	=T1
such that cT1 ¿ cT2 for all scenarios by Lemma 3.1.
Besides T2 	=T since the contrary would imply that
cT = cT1 = cT2 for all scenarios, which contradicts
Lemma 3.2. Repeating this argument we either stop
with a spanning tree which is the unique minimum
spanning tree for a scenario or we enumerate all the
spanning trees in the graph. In the latter case, we
will end up with a sequence of spanning trees which
are not the unique minimum spanning tree for any
scenario and which satisfy:

cT ¿ cT1 ¿ · · ·¿ cTk−1 ¿ cTk :

Note that in this sequence no spanning tree can be
repeated since by Lemma 3.2 two distinct spanning
trees cannot have the same cost under all scenarios.
Finally, again by Lemma 3.2 there exists a scenario s
where csTk−1

	= csTk . Together with the above inequality
this implies that for scenario s, we have

csT ¿ c
s
T1 ¿ · · ·¿ csTk−1

¿csTk :

For this scenario, tree Tk is the unique minimum span-
ning tree and so it is the desired spanning tree T ′.

Now we give a characterization for a minimal
unionwise permanent set and show that it is unique.
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Theorem 3.1. Let�′ be the set of spanning trees each
of which is the unique minimum spanning tree when
the costs of all edges on this spanning tree are at
their lower bounds and the costs of the remaining
edges are at their upper bounds. Then; �′ is a minimal
unionwise permanent set.

Proof. Assume �′ is not a unionwise permanent set.
Then there exists a scenario s, for which no spanning
tree in �′ is minimum. Let T be a minimum spanning
tree under scenario s, so T is a weak tree and csT ¡c

s
OT

for all OT ∈�′. Now since T 	∈ �′, it is not the unique
minimum spanning tree under the scenario with costs
on edges in T at their lower bounds and costs on other
edges at their upper bounds. Thus, by Corollary 3.1,
T is never a unique minimum spanning tree. So by
Lemma 3.3 there exists a tree T ′ such that cs

′
T ¿ c

s′
T ′

for all scenarios s′, and such that T ′ is the unique
minimum spanning tree for some scenario. Thus, by
Corollary 3.1, T ′ must be the unique minimum span-
ning tree when costs of edges in T ′ are at their lower
bounds and costs of other edges are at their upper
bounds, i.e., it must be that T ′ ∈�′. But cs′T ¿ cs

′
T ′ for

all scenarios s′, in particular csT ¿ c
s
T ′ . This contradicts

that cost of T is smaller than the costs of all spanning
trees in �′. So �′ is a unionwise permanent set. �′ is
minimal since any spanning tree in �′ is the unique
minimum spanning tree for some scenario.

Corollary 3.2. Minimal unionwise permanent set is
unique.

Proof. All of the trees in �′ de5ned in the statement
of Theorem 3.1 must be in any unionwise permanent
set, since they are unique minimum spanning trees
with respect to some scenario. Furthermore, since they
form on their own a minimal unionwise permanent
set, they must be the only such set.

As the minimal unionwise permanent set is unique,
when we refer to the minimal unionwise permanent
set, we refer to the set �′ which is de5ned in Theorem
3.1. Now we are in a position to characterize strong
edges in terms of the minimal unionwise permanent
set.

Proposition 3.3. An edge is strong if and only if all
spanning trees in the minimal unionwise permanent
set share that edge.

Proof. If an edge e is strong, it is on a minimum
spanning tree for all scenarios. Since each spanning
tree in the minimal unionwise permanent set is the
unique minimum spanning tree for some scenario, e
should lie on all of them.
If an edge e is shared by all spanning trees in the

minimal unionwise permanent set, then it is on a min-
imum spanning tree for all scenarios, thus it is strong.

Proposition 3.4. There exists a relative robust span-
ning tree in the minimal unionwise permanent set �′.

Proof. Assume none exists. Then there is a relative
robust spanning tree T ∈� \ �′. By Proposition 3.2,
T is a weak tree, and since T 	∈ �′, it is not the
unique minimum spanning tree for the scenario with
costs of edges in T at their lower bounds and costs of
other edges at their upper bounds. So by Corollary 3.1,
T is not the unique minimum spanning tree for any
scenario. Then by Lemma 3.3, there exists a spanning
tree T ′ such that csT ¿ c

s
T ′ for all scenarios s, and such

that T ′ is the unique minimum spanning tree for some
scenario. The latter implies that T ′ ∈�′. Consider a
relative worst case scenario sT ′ for spanning tree T ′.
We have

dT ′ = c
sT′
T ′ − csT′T∗(sT′ )6 c

sT′
T − csT′T∗(sT′ )6dT :

Since spanning tree T is a relative robust spanning
tree, we have dT ′ =dT therefore T ′ is also a relative
robust spanning tree.

The following is now a corollary of Propositions
3.3 and 3.4.

Corollary 3.3. There exists a relative robust span-
ning tree such that every strong edge in the graph lies
on the tree.

Theorems 2.2 and 2.3 show that all weak and strong
edges in the graph can be identi5ed in polynomial
time. By Proposition 3.2, we know that every relative
robust tree uses only weak edges, and by Corollary
3.3 we know that every strong edge in the graph must
lie on some relative robust tree. We can use these
results to preprocess the mixed integer programming
formulation, as follows. For every e∈E which is not
weak, we may set xe=0, since edges which are not
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weak cannot lie on a relative robust tree. For every
edge e∈E which is strong, we may set xe=1, since
there exists a relative robust tree which includes all
the strong edges in the graph.

3.5. Computational results

We used our MIP formulation (R) to compute
the robust spanning tree in complete graphs with
n=10; 15; 20; 25. We conduct two experiments on a
Pentium II PC with 450 MHz clock speed: (1) We
solve the model using the CPLEX 6.5.1 MIP solver
without any preprocessing, and (2) we preprocess
the problem graph using the results of the previous
sections before we feed to the CPLEX solver, i.e.,
remove the non-weak arcs and set the variables cor-
responding to strong edges equal to 1. For problems
with n=10; 15 and 20 we generated six sets of 5ve
problems each with varying interval speci5cations as
follows:
For each edge e; ce is uniformly distributed in the

5rst interval, and Oce is uniformly distributed in the
second interval, respectively, as listed below:

1. set: [0, 10] and (ce, 10]
2. set: [0, 15] and (ce, 15]
3. set: [0, 20] and (ce, 20]
4. set: [0, 10] and (ce, 20]
5. set: [0, 15] and (ce, 30]
6. set: [0, 20] and (ce, 40].

For the case n=25 we solved only 5ve test prob-
lems generated from the 5rst set above as a result of
increasing computational time of solving model (R)
without any preprocessing. The results are reported in
the table below where we give the minimum and max-
imum number of strong and weak edges, respectively

Table 1

n No. of strong edges No. of weak edges Without preprocessing After preprocessing % gain

10 0–4 17–36 3.92 1.96 50
15 0–5 41–69 131.13 33.09 74.77
20 0–3 66–105 3437.2 693.88 79.81
25 0–5 91–103 27126 2027.6 92.53

along with average computational times in CPU sec-
onds. The % gain is de5ned as the ratio of the di9er-
ence in CPU times to the computation time without
preprocessing (see Table 1). The preprocessing pro-
cedure which eliminates non-weak and strong edges
results in the removal of approximately 50–70% of
the edges of the graph as can be seen from the table
above. These results show that, on higher dimensions
the computational savings from preprocessing almost
become a requirement in the solution of the robust tree
problem.

4. Conclusion

In this paper, we investigated the robust version of
the minimum spanning tree problem where edge costs
are represented by intervals. We de5ned two robust-
ness measures, showed that we can solve the absolute
robust tree problem in polynomial time and proposed
an MIP formulation for the relative robust tree prob-
lem. To preprocess a given graph for the relative ro-
bust tree problem, we analyzed edges to distinguish
the ones that are on minimum spanning trees for all re-
alizations and the ones that are on minimum spanning
trees for some realizations. We presented characteri-
zations for these edges which suggest polynomial time
algorithms to decide whether a given edge is weak and
strong. Our computational results show that knowing
weak and strong edges helps shorten signi5cantly the
computation of the relative robust tree.
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