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Abstract

This paper studies the complexity of the robust spanning tree problem with interval data (RSTID). It shows that the
problem is NP-complete, settling the conjecture of Kouvelis and Yu, and that it remains so for complete graphs or when
the intervals are all [0; 1]. These results indicate that the di8culty of RSTID stems from both the graph topology and the
structure of the cost intervals, suggesting new directions for search algorithms.
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1. Introduction

Many practical applications, particularly in
telecommunication networks, can be formulated as
robust optimization problems. The goal in robust op-
timization is to >nd a solution that hedges against the
worst possible scenario.

Several robustness criteria may be used when
choosing among solutions, depending on the goal and
speci>cs of the problem. Kouvelis and Yu [9] dis-
cuss three important such criteria, namely absolute
robustness, robust deviation and relative robustness.
In many cases, under these criteria, the robust equiv-
alent of a polynomially solvable problem becomes
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NP-hard. A weaker criterion for robustness, which al-
lows controlling the degree of conservatism of the
solution, was proposed by Bertsimas and Sim [3].
While the three criteria in [9] aim at >nding a so-
lution whose worst case value is optimal, the one in
[3] targets a solution with an optimal worst case vari-
ance (in other words, the cost of the solution is of no
importance, only its stability matters). This approach
enables robust formulations of polynomially solvable
(�-approximable) problems to remain polynomially
solvable (�-approximable).

Our study is focused on the robust spanning tree
problem in graphs where the edge costs are given
by intervals (RSTID), under the robust deviation
framework. The goal of RSTID (under this frame-
work) is to >nd a spanning tree which minimizes the
maximum deviation of its cost from the costs of the
minimum spanning trees obtained for all possible
realizations of the edge costs within the given inter-
vals. The problem has attracted considerable attention
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recently [2,9,10,15,20], particularly because of its im-
portance in communication networks. For instance, as
suggested in [9], it can be used to model uncertainty
of routing delays on the edges of a network. A robust
spanning tree is desirable in this case, as it provides a
backbone on which routing (multicasting) delays are
as close as possible to the minimal delays under any
tra8c load.

It is important to point out that the choice
of a robustness criterion aLects not only what
the solution looks like, but also the complex-
ity of >nding such a solution. In the case of
RSTID, a polynomial time algorithm exists un-
der the absolute robustness framework [20], but
none was found for the robust deviation crite-
rion. In fact, Kouvelis and Yu [9] conjectured that
no such algorithm exists and essentially set the
tone for all subsequent attempts to solve the prob-
lem, which include a mixed integer programming
(MIP) formulation [20], a constraint satisfaction
approach [2] and a branch and bound approach
[15].

This paper closes this conjecture by showing that
RSTID is at least as hard as the central tree problem,
introduced by Deo [5] in the late sixties and proved
NP-complete three decades later, in [4]. Further, it
proves that RSTID remains NP-complete even in the
case of complete graphs, in contrast to the central tree
problem, which admits e8cient solutions for such
graphs [11]. These results shed a new light on the
algorithms that have been proposed for the RSTID
problem [2,15,20]. These algorithms have focused
almost exclusively on the cost structure and have
ignored the topological properties of the graph. Our
results show that both the cost structure and the topol-
ogy of the graph contribute to the complexity of the
problem and, as a consequence, they provide new di-
rections to improve these algorithms and to evaluate
them experimentally.

The rest of the paper is organized as follows.
Section 2 gives a formal de>nition of the RSTID
problem. Section 3 summarizes prior work on cen-
tral trees, which dates back to 1966. Section 4
proves that the special case of RSTID, where all
the cost intervals are [0; 1], is NP-complete. Sec-
tion 5 shows that RSTID remains NP-complete even
on complete graphs and Section 6 concludes the
paper.

2. The RSTID problem

The RSTID problem is de>ned on an undirected,
connected graph G = (V; E), whose edges e∈E are
associated with cost intervals [ce; ce]. A scenario is
a particular assignment of costs to edges from their
corresponding intervals. The deviation of a spanning
tree T under a given scenario s, denoted by 
T (s), is
the diLerence between the cost of T and the cost of
a minimum spanning tree under scenario s, where the
cost of a tree is simply the sum of its edge costs:


T (s) = cost(T; s) − cost(MSTs; s): (1)

A scenario s∗T under which this diLerence is maxi-
mized is called a worst case scenario for the spanning
tree T and the corresponding deviation is the robust
deviation of T , which is denoted by 
∗

T . In symbols,

s∗T ∈ arg max
s

T (s) (2)

and


∗
T = 
T (s∗T ): (3)

The following result gives a characterization of a
worst case scenario for a spanning tree T :

Lemma 2.1 (Yaman et al. [20]). The robust devia-
tion of a spanning tree T is achieved when edges in T
are at the highest cost and edges in the complement
of T in G are at the lowest cost (i.e. ce = ce;∀e∈T
and ce = ce;∀e∈E \ T ).

A robust spanning tree is a spanning tree whose ro-
bust deviation is minimum. The robust spanning tree
problem with interval data is de>ned as the follow-
ing decision problem: Given an undirected and con-
nected graph G with interval edge costs and a value
D∈R+, is there a spanning tree T of G whose robust
deviation 
∗

T 6D?

3. Central trees

The distance between two spanning trees of a graph
is de>ned as the number of edges present in one tree
but not in the other [19]:

d(T1; T2) = |T1 − T2| = |T2 − T1|: (4)
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The authors of [4] and [5] use slightly diLerent def-
initions for the notion of distance between trees, but it
is easy to see that they are equivalent, since the notion
refers only to complete (i.e., spanning) trees. Recall
that the cospanning tree of a spanning tree T is the
edge complement of T in G. Also, the rank �(G) of a
graph G with n vertices and k connected components
is n− k.

A central tree [5] of a graph G is a tree T0 such that
the rank r of its cospanning tree T0 is minimum, i.e.,

r = �(T0)6 �( OT ); ∀T ∈G: (5)

Deo [5] pointed out that, if r is the rank of the cospan-
ning tree of T , then there is no tree in G at a distance
greater than r from T and there is at least one tree in
G at distance exactly r from T . A direct consequence
of this is the following characterization (and hence the
name) of central trees:

Lemma 3.1 (Deo [5]). A spanning tree T0 is a cen-
tral tree of G if and only if the largest distance from
T0 to any other tree in G is minimum, i.e.,

max
i
d(T0; Ti)6max

i
d(T; Ti); ∀T ∈G: (6)

Central trees were studied intensively in the liter-
ature [12,16–18], primarily due to their importance
in circuit analysis. Deo’s initial study was motivated
by the intuition that a central tree would provide a
better starting point for tree generation methods, such
as those proposed in [6,14]. Early attempts to solve
the central tree problem resulted in a polynomial time
algorithm proposed in [1], but a gap in this algorithm
was uncovered in [7]. The problem remained open
for almost three decades, in spite of some interesting
similarities with problems for which e8cient algo-
rithms exist. The maximally distant trees problem,
for instance, which asks for a pair of spanning trees
(T1; T2) such that d(T1; T2)¿d(Ti; Tj); ∀Ti; Tj ∈G,
can be solved in polynomial time [8]. Also, as pointed
out in [13], the distances between tree pairs of a graph
G are in a one-to-one correspondence with the dis-
tances between the corresponding vertex pairs in the
tree-graphTG (recall that the vertices of a tree-graph
TG correspond to spanning trees in G, and two

vertices are connected if the original spanning trees
are at distance 1 of each other in G). Thus, >nding a
central tree in G is equivalent to >nding a central ver-
tex in TG. However, while the central vertex prob-
lem is known to have a polynomial time algorithm (in
the number of vertices), such an algorithm cannot be
used to e8ciently >nd a central tree, since the num-
ber of vertices in TG can be exponential. The search
for an e8cient algorithm for the central tree problem
concluded with the following result, due to Bezrukov
et al. [4]:

Theorem 3.2 (Bezrukov et al. [4]): The central tree
problem is NP-complete.

4. The zero-one RSTID

Consider the case of RSTID in which all edges of G
take their costs from the same interval, [0; 1]. We refer
to this problem as the zero-one robust spanning tree
problem with interval data (ZO-RSTID) associated
with G.

The next theorem is the main result of the paper.
It shows that robust spanning trees of ZO-RSTID are
central trees of the underlying graph and vice-versa.

Theorem 4.1. A spanning tree T is a robust spanning
tree of ZO-RSTID if and only if it is a central tree
of G.

Proof. By de>nition, a robust spanning tree is a tree
with a minimum robust deviation, so the set of optimal
solutions to ZO-RSTID is

S1 = arg min
T

∗
T : (7)

On the other hand, by Lemma 3.1, the set of central
trees of G is

S2 = arg min
T

max
T ′
d(T; T ′): (8)

Let T be a spanning tree ofG. Consider a worst case
scenario for T as given by Lemma 2.1, i.e., a scenario
where all edges of T have cost 1 and the remaining
edges have cost 0. Then a minimum spanning tree for
this scenario is a spanning tree that uses the minimum
number of edges of T . So 
∗

T = |T |−minT ′ |T ∩T ′|=
maxT ′ |T − T ′| = maxT ′ d(T; T ′), which means that
S1 = S2.
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Corollary 4.2. ZO-RSTID is NP-complete.

The NP-completeness of the robust spanning tree
problem with interval data follows now directly from
Corollary 4.2:

Corollary 4.3. RSTID is NP-complete.

5. RSTID on complete graphs

It is interesting to remark that, in the case of com-
plete graphs, the central tree problem is known to have
a polynomial time algorithm [11]. So, it is natural to
ask whether such an algorithm exists for RSTID as
well.

Yaman et al. [20] have shown that, in a graph G
with interval edge costs, there exists a well de>ned set
of trees which contains all the solutions of the RSTID
problem. These trees are called weak trees and they
are essentially the minimum spanning trees of G with
respect to the scenario set. More precisely, a spanning
tree T is weak if there exists at least one scenario
under which T is a minimum spanning tree of G. The
following result relates the solutions of RSTID to the
weak trees of G:

Lemma 5.1 (Yaman et al. [20]). A robust spanning
tree is a weak tree.

Edges appearing on weak trees are called weak
edges and are characterized by the following property:

Lemma 5.2 (Yaman et al. [20]). An edge e is weak if
and only if there exists a minimum spanning tree us-
ing e when its cost is at the lowest bound and the costs
of the remaining edges are at their highest bounds.

Note that this property, together with Lemma 5.1,
can be used to reduce the size (i.e., number of edges)
of G before attempting to solve RSTID. The MIP
approach proposed in [20] achieves considerable
speedup by exploiting these properties to prepro-
cess the graph. An enhanced algorithm for detecting
non-weak edges was proposed in [2] and made it
possible to use preprocessing for subproblems, which
further reduced the time to >nd an optimal solution.

However, this cannot change the complexity of the
problem, as can be seen from the following result:

Theorem 5.3. The RSTID problem remains NP-
complete on complete graphs.

Proof. Let G = (V; E) be an arbitrary undirected and
connected graph and let G′ = (V; E ∪ E′) be the com-
plete graph resulting by adding to G the missing edges
E′. Let P be the RSTID problem over G′ given by
the following edge cost intervals:

ce ∈
{

[0; 1] ∀e∈E;
[1 + �; 1 + 2�] ∀e∈E′; �¿ 0:

(9)

By construction, the intersection of any minimum
spanning tree MSTs of G′ with E′ is empty, regard-
less of the scenario s. That is, all minimum spanning
trees of G′ (with respect to the set of scenarios) take
edges only from E. Therefore, by Lemmas 5.1 and
5.2, a robust spanning tree of P must also take edges
only from E. This means that the robust spanning
trees of P are precisely the robust spanning trees of
the ZO-RSTID problem associated with G. The result
follows from Corollary 4.2.

6. Conclusion

This paper reconsidered the RSTID problem and
closed the conjecture of Kouvelis and Yu [9], by show-
ing that RSTID is at least as hard as the central tree
problem [5], and therefore NP-Complete [4]. Further-
more, it showed that RSTID remains hard on com-
plete graphs, even though a central tree can be found
in polynomial time on such graphs [11].

These results shed a new light on the algorithms
that have been proposed for RSTID [2,15,20], since
they have focused almost exclusively on the cost struc-
ture and have ignored the topological properties of the
graph. An immediate consequence of Theorem 4.1 is
that when all cost intervals are [0; 1], the complexity
of RSTID is dictated by the structure of the under-
lying graph (note that it does not matter whether the
cost interval is [0; 1] or [a; b], since we can always
shift and normalize it). In other words, if we have an
e8cient algorithm for the central tree problem on a
given graph, then the same algorithm solves RSTID
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when all edges take costs from the same interval. The
only case known so far for which such an algorithm
exists is when the graph is complete [11]. An inter-
esting question, therefore, is whether there are other
classes of graphs on which a central tree can be found
e8ciently. On the other hand, Theorem 5.3 reveals
that the topology of the graph is not the only reason
why RSTID is hard (as Theorem 4.1 may seem to
suggest). This raises the following question: what are
the cases when one could quickly decide on a solution
based only on the structure of the cost intervals? One
such case, for instance, is when all intervals have an
empty intersection. In this case, it is easy to see that
any minimum spanning tree algorithm would provide
a robust spanning tree. Finally, it would be interest-
ing to understand the combined eLect of the topology
of the graph and the structure of the cost intervals.
As we have seen, there is one case in which these as-
pects, together, make the problem easy and one might
ask whether there are any other such combinations on
which RSTID can be solved e8ciently.
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