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Abstract. We propose a general methodology based on robust opti-
mization to address the problem of optimally controlling a supply chain
subject to stochastic demand in discrete time. The attractive features
of the proposed approach are: (a) It incorporates a wide variety of phe-
nomena, including demands that are not identically distributed over time
and capacity on the echelons and links; (b) it uses very little information
on the demand distributions; (c) it leads to qualitatively similar optimal
policies (basestock policies) as in dynamic programming; (d) it is numer-
ically tractable for large scale supply chain problems even in networks,
where dynamic programming methods face serious dimensionality prob-
lems; (e) in preliminary computational experiments, it often outperforms
dynamic programming based solutions for a wide range of parameters.

1 Introduction

Optimal supply chain management has been extensively studied in the past us-
ing dynamic programming, which leads to insightful policies for simpler systems
(basestock policies for series systems; Clark and Scarf [7]). Unfortunately, dy-
namic programming assumes complete knowledge of the probability distributions
and suffers from the curse of dimensionality. As a result, preference for imple-
mentation purposes is given to more intuitive policies that are much easier to
compute, but also suboptimal (see Zipkin [12]).

Hence, the need arises to develop a new optimization approach that incor-
porates the stochastic character of the demand in the supply chain without
making any assumptions on its distribution, is applicable to a wide range of
network topologies, is easy to understand intuitively, and combines computa-
tional tractability with the structural properties of the optimal policy. The goal
of this paper is to present such an approach, based on robust linear and mixed
integer optimization that has witnessed increased research activity (Soyster [11],
Ben-Tal and Nemirovski ([1,2,3]) and El-Ghaoui et. al. ([8,9], Bertsimas and Sim
[5,6]). We utilize the approach in [5,6], which leads to linear robust counterparts
while controlling the level of conservativeness of the solution.

The contributions of this paper are as follows: (a) We develop an approach
that incorporates demand uncertainty in a deterministic manner, remains nu-
merically tractable as the dimension of the problem increases and leads to high-
quality solutions without assuming a specific demand distribution. (b) The ro-
bust problem is of the same class as the nominal problem, that is, a linear
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programming problem if there are no fixed costs or a mixed integer program-
ming problem if fixed costs are present, independently of the topology of the
network. (c) The optimal robust policy is qualitatively similar to the optimal
policy obtained by dynamic programming when known. In particular, it remains
basestock when the optimal stochastic policy is basestock, as well as in some
other cases where the optimal stochastic policy is not known. (d) We derive
closed-form expressions of key parameters defining the optimal policy. These ex-
pressions provide a deeper insight into the way uncertainty affects the optimal
policy in supply chain problems.

2 The Robust Optimization Approach

We rely extensively on the robust optimization tools developed by Bertsimas and
Sim in [5] for linear programming problems. We consider the following problem
subject to data uncertainty:

min c′x : Ax ≤ b, l ≤ x ≤ u,

where we assume WLOG that only the matrix A is subject to data uncertainty.

Let A =
{
A ∈ Rm×n | aij ∈ [ aij − âij , aij + âij ] ∀i, j,

∑

(i,j)∈J

|aij − aij |
âij

≤ Γ
}
.

Γ is a parameter that controls the degree of conservatism. The robust problem
is then formulated as:

min c′x
s.t. Ax ≤ b, ∀A ∈ A

l ≤ x ≤ u.
(1)

Theorem 1 (Bertsimas and Sim [5]). The uncertain linear programming
problem has the following robust, linear counterpart:

min c′x
s.t.

∑

j

āijxj + qiΓ +
∑

j:(i,j)∈J

rij ≤ bi, ∀i

qi + rij ≥ âijyj, ∀(i, j) ∈ J
−y ≤ x ≤ y
l ≤ x ≤ u
q ≥ 0, r ≥ 0, y ≥ 0.

(2)

The robust counterpart is therefore of the same class as the nominal prob-
lem, that is, a linear programming problem. This is a highly attractive feature
of this approach, since linear programming problems are readily solved by stan-
dard optimization packages. Moreover, if in the original problem (1), some of
the variables were constrained to be integers, then the robust counterpart (2)
would retain the same properties, i.e., the robust counterpart of a mixed integer
programming problem is itself another mixed integer programming problem.
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3 The Single Station Case

3.1 The Uncapacitated Model

In this section we apply the robust optimization framework to the problem of
ordering, at a single installation, a single type of item subject to stochastic
demand over a finite discrete horizon of T periods, so as to minimize a given
cost function. We define, for k = 0, . . . , T :
xk : the stock available at the beginning of the kth period,
uk : the stock ordered at the beginning of the kth period,
wk : the demand during the kth period.

The stock ordered at the beginning of the kth period is delivered before the
beginning of the (k + 1)st period, that is, all orders have a constant leadtime
equal to 0. Excess demand is backlogged. Therefore, the evolution of the stock
over time is described by the following linear equation:

xk+1 = xk + uk − wk, k = 0, . . . , T − 1, (3)

leading to the closed-form expression:

xk+1 = x0 +
k∑

i=0

(ui − wi), k = 0, . . . , T − 1. (4)

Neither the stock available nor the quantity ordered at each period are subject
to upper bounds. Section 3.2 deals with the capacitated case.

The demands wk are random variables. In order to apply the approach out-
lined in Sect. 2, we model wk for each k as an uncertain parameter that takes
values in [wk − ŵk, wk + ŵk]. We define the scaled deviation of wk from its nom-
inal value to be zk = (wk − wk)/ŵk, which takes values in [−1, 1]. We impose
budgets of uncertainty at each time period k for the scaled deviations up to
time k. Hence, we now have the constraint

∑k
i=0 |zi| ≤ Γk for all time periods

k = 0, . . . , T − 1. These budgets of uncertainty rule out large deviations in the
cumulative demand, and as a result the robust methodology can be understood
as a “reasonable worst-case” approach. The main assumption we make on the Γk

is that they are increasing in k, i.e., we feel that uncertainty increases with the
number of time periods considered. We also constrain the Γk to be increasing
by at most 1 at each time period, i.e., the increase of the budgets of uncertainty
should not exceed the number of new parameters added at each time period.

Finally, we specify the cost function. The cost incurred at period k consists
of two parts: a purchasing cost C(uk) and a holding/shortage cost resulting from
this order R(xk+1). Here, we consider a purchasing cost of the form:

C(u) =
{

K + c · u, if u > 0,
0, if u = 0, (5)

with c > 0 the unit variable cost and K ≥ 0 the fixed cost. If K > 0, a
fixed positive cost is incurred whenever an order is made. The holding/shortage
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cost represents the cost associated with having either excess inventory (positive
stock) or unfilled demand (negative stock). We consider a convex, piecewise
linear holding/shortage cost:

R(x) = max(hx,−px), (6)

where h and p are nonnegative. The holding/shortage cost for period k, yk, is
computed at the end of the period, after the shipment uk has been received
and the demand wk has been realized. We assume p > c, so that ordering stock
remains a possibility up to the last period.

Using the piecewise linearity and convexity of the holding/shortage cost func-
tion, and modelling the fixed ordering cost with binary variables, the inventory
problem we consider can be written as a mixed integer programming problem:

min
T−1∑

k=0

(cuk + Kvk + yk)

s.t. yk ≥ h

(

x0 +
k∑

i=0

(ui − wi)

)

k = 0, . . . , T − 1

yk ≥ −p

(

x0 +
k∑

i=0

(ui − wi)

)

k = 0, . . . , T − 1

0 ≤ uk ≤ Mvk, vk ∈ {0, 1} k = 0, . . . , T − 1,

(7)

where wi = wi + ŵi · zi such that z ∈ P = {|zi| ≤ 1 ∀i ≥ 0,
∑k

i=0 |zi| ≤ Γk ∀k ≥
0}. Applying Theorem 1, we obtain:

Theorem 2. The robust formulation for the single-station inventory problem
(7) is:

min
T−1∑

k=0

(cuk + Kvk + yk)

s.t. yk ≥ h

(

x0 +
k∑

i=0

(ui − wi) + qkΓk +
k∑

i=0

rik

)

yk ≥ p

(

−x0 −
k∑

i=0

(ui − wi) + qkΓk +
k∑

i=0

rik

)

qk + rik ≥ ŵi

qk ≥ 0, rik ≥ 0
0 ≤ uk ≤ Mvk, vk ∈ {0, 1},

(8)

where M is a large positive number.

The variables qk and rik quantify the sensitivity of the cost to infinitesimal
changes in the key parameters of the robust approach, specifically the level of
conservativeness and the bounds of the uncertain variables. qk Γk +

∑k
i=0 rik

represents the extra inventory (or lack thereof) that we want to take into account
in controlling the system from a worst-case perspective.
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The robust problem is a linear programming problem if there is no fixed cost
(K = 0) and a mixed integer programming problem if fixed costs are present
(K > 0). In both cases, this robust model can readily be solved numerically
through standard optimization tools, which is of course very appealing. It is
also desirable to have some theoretical understanding of the optimal policy, in
particular with respect to the optimal nominal policy and, if known, the optimal
stochastic policy. We address these questions next.

Definition 1 ((S,S) and (s,S) policies). The optimal policy of a discrete-
horizon inventory problem is said to be (s, S), or basestock, if there exists a
threshold sequence (sk, Sk) such that, at each time period k, it is optimal to
order Sk − xk if xk < sk and 0 otherwise, with sk ≤ Sk. If there is no fixed
ordering cost (K = 0), sk = Sk.

In order to analyze the optimal robust policy, we need the following lemma:

Lemma 1. (a) The optimal policy in the stochastic case, where the cost to min-
imize is the expected value of the cost function over the random variables wk, is
(s, S). As a result, the optimal policy for the nominal problem is also (s, S).
(b) For the nominal problem without fixed cost, the optimal policy for the nomi-
nal case is (S,S) with the threshold at time k being Sk = wk.
(c) For the nominal problem with fixed cost, if we denote by tj (j = 1, . . . , J)
the times where stock is ordered and sj, Sj the corresponding thresholds at time
tj, we have:

Sj =
Ij∑

i=0

wtj+i, (9)

and

s1 = x0 −
t1−1∑

i=0

wi, sj = −
Lj−1−1∑

i=Ij−1+1

wtj−1+i, j ≥ 2, (10)

where Lj = tj+1 − tj and Ij =
⌊

pLj − c 1{j=J}
h + p

⌋
.

We next present the main result regarding the structure of the optimal robust
policy.

Theorem 3 (Optimal robust policy).
(a) The optimal policy in the robust formulation (8), evaluated at time 0 for
the rest of the horizon, is the optimal policy for the nominal problem with the
modified demand:

w′
k = wk +

p − h

p + h
(Ak − Ak−1) , (11)

where Ak = q∗kΓk +
∑k

i=0 r∗ik is the deviation of the cumulative demand from
its mean at time k, q∗ and r∗ being the optimal q and r variables in (8). (By
convention q−1 = r·,−1 = 0.) In particular it is (S, S) if there is no fixed cost
and (s, S) if there is a fixed cost.
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(b) If there is no fixed cost, the optimal robust policy is (S,S) with Sk = w′
k for

all k.
(c) If there is a fixed cost, the corresponding thresholds Sj, sj, where j = 1, . . . , J
indexes the ordering times, are given by (9) and (10) applied to the modified
demand w′

k.
(d) The optimal cost of the robust problem (8) is equal to the optimal cost for the
nominal problem with the modified demand plus a term representing the extra
cost incurred by the robust policy, 2ph

p + h

∑T−1
k=0 Ak.

Proof. Let (u∗,v∗,q∗, r∗) be the optimal solution of (8). Obviously, setting the
q and r variables to their optimal values q∗ and r∗ in (8) and resolving the linear
programming problem will give u∗ and v∗ again. This enables us to focus on
the optimal ordering policy only, taking the auxiliary variables q∗, r∗ as given
in the robust formulation (8). We have then to solve:

min
u≥0

T−1∑

k=0

[
cuk + K1{uk>0} + max (h(xk+1 + Ak), p(−xk+1 + Ak))

]
(12)

where xk+1 = x0 +
∑k

i=0(ui − wi) and Ak = q∗kΓk +
∑k

i=0 r∗ik for all k.
We define a modified stock variable x′

k, which evolves according to the linear
equation:

x′
k+1 = x′

k + uk −
(

wk +
p − h

p + h
(Ak − Ak−1)

)

︸ ︷︷ ︸
=w′

k

, (13)

with x′
0 = x0. Note that the modified demand w′

k is not subject to uncertainty.
We have:

max (h(xk+1 + Ak), p(−xk+1 + Ak)) = max
(
hx′

k+1,−px′
k+1

)
+

2ph

p + h
Ak. (14)

The reformulation of the robust model, given the optimal q∗ and r∗ variables,
as a nominal inventory problem in the modified stock variable x′

k (plus the fixed

cost 2ph
p + h

∑T−1
k=0 Ak) follows from injecting (14) into (12). This proves (a) and

(d). We conclude that (b) and (c) hold by invoking Lemma 1. ��

Remark: For the case without fixed cost, and for the case with fixed cost when
the optimal ordering times are given, the robust approach leads to the thresholds
in closed form. For instance, if the demand is i.i.d. (wk = w, ŵk = ŵ for all k), we

have Ak = ŵ Γk and, if there is no fixed cost, Sk = w′
k = w+p − h

p + h
ŵ (Γk − Γk−1)

for all k.
Hence, the robust approach protects against the uncertainty of the demand

while maintaining striking similarities with the nominal problem, remains com-
putationally tractable and is easy to understand intuitively.
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3.2 The Capacitated Model

So far, we have assumed that there was no upper bound either on the amount
of stock that can be ordered or on the amount of stock that can be held in the
facility. In this section, we consider the more realistic case where such bounds
exist. The other assumptions remain the same as in Sect. 3.1.

The Model with Capacitated Orders. The extension of the robust model
to capacitated orders of maximal size d is immediate, by adding the constraint:

uk ≤ d, ∀k, (15)

to (8). We next study the structure of the optimal policy.

Theorem 4 (Optimal robust policy). The optimal robust policy is the op-
timal policy for the nominal problem with capacity d on the links and with the
modified demand defined in (11). As a result, the optimal policy remains (S, S)
(resp (s, S)) in the case without (resp with) fixed cost.

The Model with Capacitated Inventory. We now consider the case where
stock can only be stored up to an amount C. This adds the following constraint
to (8):

x0 +
k∑

i=0

(ui − wi) ≤ C, (16)

where wi = wi + ŵi · zi such that z ∈ {|zi| ≤ 1 ∀i,
∑k

i=0 |zi| ≤ Γk ∀k}.
This constraint depends on the uncertain parameters wi. Applying the technique
developed in Sect. 2, we rewrite this constraint in the robust framework as:

xk+1 + qkΓk +
k∑

i=0

rik ≤ C, ∀k, (17)

where qk and rik are defined in (8). We next study the optimal policy.

Theorem 5 (Optimal robust policy). The optimal robust policy is the op-
timal policy for the nominal problem subject to the modified demand defined in
(11), and with inventory capacity at time 0 equal to C, and inventory capacity
at time k + 1, k ≥ 0, equal to C − 2p

p + h
Ak.

As a result, the optimal policy remains (S, S) (resp (s, S)) in the case without
(resp with) fixed purchasing cost.



A Robust Optimization Approach to Supply Chain Management 93

4 The Network Case

4.1 The Uncapacitated Model

We now extend the results of Sect. 3 to the network case. We first study the case
of tree networks, which are well suited to describe supply chains because of their
hierarchical structure: the main storage hubs (the sources of the network) receive
their supplies from outside manufacturing plants and send items throughout the
network, each time bringing them closer to their final destination, until they
reach the stores (the sinks of the network). Let S be the number of sink nodes.
When there is only one sink node, the tree network is called a series system.

We define echelon k, for k = 1, . . . , N with N the total number of nodes
in the network, to be the union of all the installations, including k itself, that
can receive stock from installation k, and the links between them. In the special
case of series systems, we number the installations such that for k = 1, . . . , N ,
the items transit from installation k + 1 to k, with installation N receiving its
supply from the plant and installation 1 being the only sink node, as in [7]. In
that case, the demand at installation k + 1 at time t is the amount of stock
ordered at installation k at the same time t. We also define, for k = 1, . . . , N :
Ik(t) : the stock available at the beginning of period t at installation k,
Xk(t) : the stock available at the beginning of period t at echelon k,
Dikk(t) : the stock ordered at the beginning of period t at echelon k to its supplier
ik,
Ws(t) : the demand at sink node s during period t, s = 1, . . . , S.

Let N(k) be the set of installations supplied by installation k and O(k) the
set of sink nodes in echelon k. We assume constant leadtimes equal to 0, backlog
of excess demand, and linear dynamics for the stock at installation k at time
t = 0, . . . , T − 1 :

Ik(t + 1) = Ik(t) + Dikk(t) −
∑

j∈N(k)

Dkj(t), (18)

By convention, if k is a sink node s,
∑

j∈N(k) Dkj(t) = Ws(t). This leads to the
following dynamics for the stock at echelon k at time t = 0, . . . , T − 1:

Xk(t + 1) = Xk(t) + Dikk(t) −
∑

s∈O(k)

Ws(t). (19)

Furthermore, the stock ordered by echelon k at time t is subject to the
coupling constraint:

∑

i∈N(k)

Dki(t) ≤ max(Ik(t), 0), ∀k, ∀t, (20)

that is, the total order made to a supplier cannot exceed what the supplier
has currently in stock, or, equivalently, the supplier can only send through the
network items that it really has. Since the network was empty when it started
operating at time t0 = −∞, it follows by induction on t that Ik(t) ≥ 0 for all
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k ≥ 2. Therefore the coupling constraint between echelons is linear and can be
rewritten as:

∑

i∈N(k)

Dki(t) ≤ Xk(t) −
∑

i∈N(k)

Xi(t), ∀k, ∀t. (21)

Finally, we specify the cost function. We assume that each echelon k has the
same cost structure as the single installation modelled in Sect. 3.1 with spe-
cific parameters (ck, Kk, hk, pk). We also keep here the same notations and as-
sumptions as in Sect. 3.1 regarding the uncertainty structure at each sink node.
In particular, each sink node s has its own threshold sequence Γs(t) evolving
over time that represents the total budget of uncertainty allowed up to time
t for sink s. We have Ws(t) = W s(t) + Ŵs(t) · Zs(t) such that the Zs(t) be-
long to the set Ps = {|Zs(t)| ≤ 1 ∀t,

∑t
τ=0 Zs(τ) ≤ Γs(t), ∀t}. We assume

0 ≤ Γs(t) − Γs(t − 1) ≤ 1 for all s and t, that is, the budgets of uncertainty are
increasing in t at each sink node, but cannot increase by more than 1 at each
time period.

Applying the robust approach developed in Sect. 2 to the holding/shortage
constraints in the same manner as in Sect. 3, we obtain the mixed integer pro-
gramming problem:

min
T−1∑

t=0

N∑

k=1

∑

i∈N(k)

{ckiDki(t) + KkiVki(t) + Yi(t)}

s.t. Yi(t) ≥ hi





Xi(t + 1) +

∑

s∈O(i)

(

qs(t)Γs(t) +
t∑

τ=0

rs(τ, t)

)


,

Yi(t) ≥ pi





−Xi(t + 1) +

∑

s∈O(i)

(

qs(t)Γs(t) +
t∑

τ=0

rs(τ, t)

)


,

∑

i∈N(k)

Dki(t) ≤ Xk(t) −
∑

i∈N(k)

Xi(t),

qs(t) + rs(τ, t) ≥ Ŵs(τ),
qs(t) ≥ 0, rs(τ, t) ≥ 0,
0 ≤ Dki(t) ≤ MVki(t), Vki(t) ∈ {0, 1},

(22)

with X i(t+1) = Xi(0)+
∑t

τ=0

{
Dki(τ) −∑s∈O(i) W s(τ)

}
for all i and t, where

k supplies i.
As in the single-station case, an attractive feature of this approach is that

the robust model of a supply chain remains of the same class as the nominal
model, that is, a linear programming problem if there are no fixed costs and a
mixed integer programming problem if fixed costs are present. Therefore, the
proposed methodology is numerically tractable for very general topologies. The
main result is as follows.
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Theorem 6 (Optimal robust policy).
(a) The optimal policy in (22) for echelon k is the optimal policy obtained for
the supply chain subject to the modified, deterministic demand at sink node s
(for s ∈ O(k)):

W ′
s,k(t) = W s(t) +

pk − hk

pk + hk
(As(t) − As(t − 1)) , (23)

where As(t) = q∗s(t)Γs(t) +
∑t

τ=0 r∗s(τ, t), q∗
s and r∗s being the optimal q and r

variables associated with sink node s in (22).
(b) The optimal cost in the robust case for the tree network is equal to the optimal
cost of the nominal problem for the modified demands, plus a term representing
the extra cost incurred by the robust policy,

N∑

k=1

2pkhk

pk + hk

T−1∑

t=0

∑

s∈O(k)

As(t).

The case of more general supply chains is complex because they cannot be
reduced to a tree network: the need might arise to order from a more expensive
supplier when the cheapest one does not have enough inventory. We can still de-
fine echelons for those networks in a similar manner as before, and the evolution
of the stock at echelon k, which is supplied by the set of installations I(k) and
has the set O(k) as its sink nodes, is described by the following linear equation:

Xk(t + 1) = Xk(0) +
t∑

τ=0






∑

i∈I(k)

Dik(τ) −
∑

j∈O(k)

Wj(τ)





. (24)

With the standard cost assumptions used before, the echelons cannot be studied
independently and the optimal policy is not necessarily basestock, even in the
simple case of demand without uncertainty. This is illustrated by the following
example.

3
D

2D

1
D

2
I

1
I

W

Fig. 1. A network for which the optimal policy is not basestock.

The network in Fig. 1 has two installations, and therefore two echelons.
Echelon 1 can be supplied by installation 2 at a unit cost c1 = 1, without
any fixed ordering cost, and has the option to order directly from the plant for
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the same unit cost c2 = 1, but with an additional fixed cost K2 = 4 incurred
whenever an order is made. This option is attractive only if installation 2 does
not have enough stock in inventory. The holding and shortage unit costs at
echelon 1 are h1 = p1 = 2. The horizon is 1 time period, and the demand at
time 0 is deterministic, equal to 10 units. Echelon 1 has only 5 units in inventory
at time 0.

Comparing the two options, it is easy to see that it is optimal for echelon 1
to order 5 units from 2 if 2 has 5 units in inventory at time 0, 2 units from 2
and none from the plant if 2 has 2 units, and 5 units from the plant if 2 has no
item in inventory. Therefore, the optimal amount of stock on hand and on order
at echelon 1 at time 0 is 10, resp. 7, 10, units if installation 2 has 5, resp 2, 0
units in inventory at time 0. Thus, the optimal policy is not basestock.

Also, while we can reformulate the robust problem as a new problem with
modified demand in the same fashion as before, it loses some of its meaning since
distinct echelons can now “see” the same sink node but different demands at this
node (because of the cost parameters specific to each echelon, which appear in
the expression of the modified demand). Hence, it is not clear how they can work
together to meet this demand optimally.

However, the proposed robust methodology remains numerically tractable
in a wide range of settings, in particular with a holding/shortage cost at the
installation level instead of the echelon. This illustrates the applicability of the
proposed approach to different cost structures.

4.2 The Capacitated Model

We now refine our description of the inventory problem in a supply chain by
introducing upper bounds on the amount of stock that can be ordered and/or
held at any time and at any echelon. As explained in Sect. 3.2, an upper bound
on the maximal order can be directly introduced in the proposed approach, by
adding the constraint:

Dki(t) ≤ dki ∀k, ∀i ∈ N (k), ∀t, (25)

to (22). Inventory capacity, however, requires further manipulation, since the
level of inventory held at an echelon at any time depends on the demand, which is
subject to uncertainty. Similar manipulations as in Sect. 3.2 lead to the constraint
∀k, ∀t:

Xk(t + 1) +
∑

s∈O(k)

(

qs(t)Γs(t) +
t∑

τ=0

rs(τ, t)

)

≤ Ck (26)

to be added to the formulation, q(t) and r(τ, t) being defined as in (23).
We next study the structure of the optimal policy.

Theorem 7. The optimal policy at each echelon remains basestock in presence
of link and echelon capacities. It is identical to the optimal policy of a nominal
problem at a single station subject to the modified demand defined in (23), time-
varying echelon capacities: C′

k(t+1) = Ck − 2pk
pk + hk

∑
s∈O(k) As(t), where Ck is
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the original capacity at echelon k, and link capacities that incorporate Dki(t) ≤
dki for all k, i ∈ N (k) and t, as well as the capacity induced by the coupling
constraint (21).

5 Numerical Implementation

We now apply the proposed methodology to the example of minimizing the cost
at a single station. The horizon is T = 10 time periods, the initial inventory is
x0 = 150, with an ordering cost per unit c = 1, a holding cost h = 2 and a short-
age cost p = 3, in appropriate measurement units. There is no fixed ordering cost.
The stochastic demand is i.i.d. with mean w = 100. In the robust framework,
we consider that the demand belongs to the interval [0, 200], that is ŵ = 100.
We compare the expected costs of the robust policy and of the stochastic policy
obtained by dynamic programming as a function of the standard deviation σ of
the distribution.

To select the budgets of uncertainty we minimize a tight upper bound on the
expected cost of the system over the set of nonnegative distributions of given
mean and variance, using the results in [4]. This yields for all k:

Γk = min

(
σ

ŵ

√
k + 1
1 − α2 , k + 1

)

, (27)

and the modified demand at time k is in this example:

w′
k = w +

α σ√
1 − α2

(
√

k + 1 −
√

k), (28)

with α = p − h
p + h

. Expected costs are computed using the mean of a sample of
size 1, 000.

In the first set of experiments, the stochastic policy is computed using a
binomial distribution. In the second set of experiments, the stochastic policy is
computed using an approximation of the gaussian distribution on seven points
(w − 3σ, w − 2σ, . . . , w + 2σ, w + 3σ). In both cases, the actual distribution is
Gamma, Lognormal or Gaussian, with the same mean w and standard deviation
σ. The impact of the mistake on the demand distribution is measured by the
ratio (DP −ROB)/DP , with DP , resp. ROB, the expected cost obtained using
dynamic programming, resp. the robust approach. The results are shown in Fig.
2. In the first case, where the distributions are very different beyond their first
moments, the impact of the ratio increases as the standard deviation increases
and the robust policy outperforms dynamic programming by up to 8%. In the
second case, the two methods are equivalent in terms of performance, since the
robust policy outperforms dynamic programming by at most 0.3%, which is not
statistically significant.

In Figs. 3-5, we study the impact of the cost parameters c, h and p in the
settings described above, where we vary one parameter at a time. The impact
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Fig. 2. Impact of the standard deviation on performance.

of a change in the parameters is qualitatively similar in both cases, with lit-
tle dependence on the actual distribution of the demand. The robust approach
outperforms the stochastic policy for a wide range of parameters, although the
stochastic policy leads to better results for large values of the ratio p/h (greater
than about 3). The exact numbers depend on the distribution used to compute
the stochastic policy.
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Fig. 3. Impact of the ordering cost.

Overall the numerical evidence suggests that the robust policy performs sig-
nificantly better than dynamic programming when assumed and actual distri-
butions differ widely despite having the same mean and standard deviation, and
performs similarly to dynamic programming when assumed and actual distribu-
tions are close. The results are thus quite promising.
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Fig. 4. Impact of the holding cost.
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Fig. 5. Impact of the shortage cost.

6 Conclusions

We have proposed a deterministic, numerically tractable methodology to ad-
dress the problem of optimally controlling supply chains subject to uncertain
demand. Using robust optimization ideas, we have built an equivalent model
without uncertainty of the same class as the nominal problem, with a modi-
fied demand sequence. Specifically, the proposed model is a linear programming
problem if there are no fixed costs throughout the supply chain and a mixed
integer programming problem if fixed costs are present.

The key attractive features of the proposed approach are: (a) It incorpo-
rates a wide variety of phenomena, including demands that are not identically
distributed over time and capacity on the echelons and links; (b) it uses very
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little information on the demand distributions; (c) it leads to qualitatively sim-
ilar optimal policies (basestock policies) as in dynamic programming; (d) it is
numerically tractable for large scale supply chain problems even in networks,
where dynamic programming methods face serious dimensionality problems; (e)
in preliminary computational experiments, it often outperforms dynamic pro-
gramming based solutions for a wide range of parameters.
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