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Homework Review

• Results?
• Questions?
• Causal vs. Generative?
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Decoding Methods

Direct decoding methods:
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Simple linear regression method
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Decoding Methods

Direct decoding methods:

In contrast to generative encoding models:

Need a sound way to exploit generative models 
for decoding.

,...),( 1−= kkk zzfx vvv

)( kk xfz vv =
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Today’s Strategy

• More mathematical than the previous classes.
• Group exploration and discovery.
• One topic with deeper level of understanding.

– Particle Filtering
• Review and explore recursive Bayesian estimation
• Introduce SIS algorithm
• Explore Monte Carlo integration
• Examine SIS algorithm (if time permits)
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Accounting for Uncertainty
Every real process has process and measurement noise

noise)(f :0nobservatio += kk xz vv

yuncertaint)(f̂~| :0nobservatio +kkk xxz vvv

noise)(f 1:0process += −kk xx vv

A probabilistic process model accounts for process and measurement noise 
probabilistically.  Noise appears as modeling uncertainty. 

yuncertaint)(f̂~| 1:0process1 +−− kkk xxx vvv

Example: missile interceptor system.  The missile propulsion system is noisy 
and radar observations are noisy.  Even if we are given exact process 

and observation models our estimate of the missile’s position may 
diverge if we don’t account for uncertainty.



Frank Wood  - CS295-7 2005 Brown University

Recursive Bayesian Estimation

• Optimally integrates subsequent 
observations into process and 
observation models.

• Example
– Biased coin.
– Fair Bernoulli prior

yuncertaint)(f̂~| :0tmeasuremen +kkk xxz vvv

yuncertaint)(f̂~| 1:0model1 +−− kkk xxx vvv
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normalization constant 
(independent of mouth)

Prior (a priori –
before the evidence)

Likelihood
(evidence)

Bayesian Inference

Posterior

a posteriori probability 
(after the evidence)

)z(
)x()x|z()z|  (

p
ppxp =

We infer system state from uncertain observations 
and our prior knowledge (model) of system state.
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Notation and BCI Example
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e.g. hand kinematics at time k
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Generative Model

kkobsk qxfz vvv += )( :1

kkpk wxfx vvv += − )( 1:1

neural firing rate

state (e.g. hand position, 
velocity, acceleration)

noise (e.g. 
Normal or 
Poisson)

Encoding: linear, non-linear?

f()’s Markov?
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Build a probabilistic model of this real process and 
with it estimate the posterior distribution                     
so that we can infer the most likely state                      
or the expected state 

Today’s Goal

)z|x( :1 kkp

How ???

Recursion!
)z|x(        )z|x( :11:11 kkkk pp ⇒−−

• How can we formulate this recursion ?
• How can we compute this recursion ?
• What assumptions must we make ?

)|(argmax :1 kk
x

zxp
k

∫ )|( :1 kkk zxpx
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Modeling

• An useful aside:  Graphical models

Graphical models are a way of systematically diagramming the 
dependencies amongst groups of random variables.  Graphical models 
can help elucidate assumptions and modeling choices that would 
otherwise be hard to visualize and understand.

Using a graphical model will help us design our model!
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Graphical Model

kxv

kzv

)|( kk xzp vv

Generative model:
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Graphical Model

kxv

kzv

1−kxv

1−kzv

1+kxv

1+kzv
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Graphical Model

kxv

kzv

1−kxv

1−kzv

1+kxv

1+kzv

)|(),,,|( 1121 −−− = kkkkk xxpxxxxp K

)|(),|( 1:1 kkkkk xzpxzzp vvvvv =− )|()|( 11,1:1 −−− = kkkkk xxpxzxp vvvrv
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Summary

From these modeling choices all we have to choose is:

Likelihood model

Temporal prior model

How to compute the posterior

)|( kk xzp vv

)|( 1−kk xxp vv

∫ −−−−= 11:111:1 )|()|()|()|( kkkkkkkkk xdzxpxxpxzpzxp vvvvvvvvv κ
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Observation Equation:
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Gaussian Assumption Clarified

Gaussian distribution:
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Graphical Model
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Break!

• When we come back quickly arrange yourselves in 
groups of 4 or 5.  Uniformly distribute the applied 
math people and people who have taken CS143 
(Vision) into these groups.

• Instead of straight-up lecture we are going to work 
through some derivations together to improve 
retention and facilitate understanding.

• If you don’t have pencil and paper please get some.
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Next step.

• Now we have a model – how do we do recursive 
Bayesian inference.

• I will present to you several relatively easy problems 
which I expect each group to solve in 5-10 minutes.  
When every group is finished I will select one group 
and ask for the person in that group who understood 
the problem the least to explain the solution to the 
class.  The group is responsible for nominating this 
person and his or her ability to explain the solution.
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normalization constant 
(independent of 
kinematics)

Prior (a priori –
before the evidence)

Likelihood
(evidence)

Recursive Bayesian Inference

Posterior

a posteriori probability 
(after the evidence)

)firing(
)kinematics()kinematics|firing()firing| kinematics(

t:1

ttt
t:1t p

ppp =

We sequentially infer hand kinematics from 
uncertain evidence and our prior knowledge of how 
hands move.
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Recursive Bayesian Estimation

• Update Stage
– From the prediction stage you have a prior 

distribution over the system state at the current 
time k.   After observing the process at time k you 
can update the posterior to reflect that new 
information.

• Prediction Stage
– Given the posterior from a previous update stage 

and your system model you produce the next prior 
distribution.
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Update Stage
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Prediction Stage

)zxp( 1:1 −kk

11:111 x)zxp()xxp( −−−− ∂= ∫ kkkkk

ACACABCB δ)|Pr(),|Pr()|Pr( ∫=

11:111:11 x)zxp()z,xxp( −−−−− ∂= ∫ kkkkkk

Law of Total 
Probability

Law of Total 
Probability

IndependenceIndependence
PosteriorPosterior

PriorPrior
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Phew!

• Let’s drill this into our heads and actually run 
the Bayesian recursion to see how it starts and 
behaves.
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The Bayesian Recursion
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Run the Bayesian recursion 
to depth 2.
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Highlighting the Assumptions

)zx( :1 kkp
)zzx( 1:1 kkk ,p −=

11:111 x)zx()xx()xz( −−−−∫∝ kkkkkkk dppp

)zx()zxz( 1:11:1 −−∝ kkkkk p,p

Bayes rule:
)(/)()|()|( apbpabpbap =

Independence assumption:
)x|x()z,x|x( 11:11 −−− = kkkkk pp

Independence assumption:
)|(),|( 1 kkkkk pp xzZxz =−

)zx()xz( 1:1 −∝ kkkk pp

Law of Total Probability:

∫= dbcbpcbapcap )|(),|()|(

11:111:11 x)zx()z,xx()xz( −−−−−∫∝ kkkkkkkk δppp

What’s missing?
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Bayesian Formulation

11011:0 pppp −−−−∫= k:kkkkkkkk )dxzx()xx()xz(κ )zx(

):|x(z kkp likelihood

temporal prior

posterior probability at previous time step

normalizing term

):|x(x kk 1p −

):|z(x :kk 111p −−

:κ
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General Model

• can be an arbitrary, non-Gaussian, multi-
modal distribution. 

• The recursive equation may have no explicit solution, 
but can usually be approximated numerically using 
Monte Carlo techniques such as particle filtering.

• However, if both the likelihood and prior are linear 
Gaussian, then the recursive equation has a closed 
form solution. This model, which we’ll see next week, 
is known as the Kalman filter.  (Kalman, 1960)

)z|x( :0 kkp
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Particle Filtering

• “A technique for implementing a recursive Bayesian 
filter by Monte Carlo simulations” Arulampalam et. 
al.

• A set of samples (particles) and weights that represent 
the posterior distribution (a Random Measure) is 
maintained throughout the algorithm.

• It boils down to sampling, density representation by 
samples, and Monte Carlo integration.
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Sampling
• Uniform

– rand()      Linear Congruential Generator
• x(n) = a * x(n-1) + b mod M     

0.2311    0.6068    0.4860    0.8913    0.7621    0.4565    0.0185

• Normal
– randn() Box-Mueller 

• x1,x2 ~ U(0,1) -> y1,y2 ~N(0,1)
– y1 = sqrt( - 2 ln(x1) ) cos( 2 pi x2 ) 
– y2 = sqrt( - 2 ln(x1) ) sin( 2 pi x2 ) 

• Binomial(p)
– if(rand()<p)

• Higher Dimensional Distributions
– Metropolis Hastings / Gibbs
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Distribution Representation by Samples
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Law of Large Numbers
• If we have n fair samples drawn from a distribution P

• Then one version of the Law of Large Numbers says that the 
emperical average of a the value of a function over the samples 
converges to the expected value of the function as the number 
of samples grows.
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Why Does this Matter

• Particle Filtering represents distributions by 
samples.

• We need to either maximize or take an 
expected value of the posterior (both 
functions) with the posterior represented by 
samples.

• We need to sample from distributions to 
simulate trajectories, etc.
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Monte Carlo Integration
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The Particle Filtering Story
• A bit hand wavy

– Simplified from Arulampalam et al and DeFreitas et al
– Largely overlooks the importance weights are maintained and updated
– Doesn’t touch particle degeneration and replacement

• Posterior Representation by Samples
• Importance Sampling
• Weights in Importance Sampling
• Sampling from the Prediction Distribution
• Simple Particle Filter
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Posterior Representation by Samples

We use a set of random samples from the posterior distribution to 
represent the posterior.  The we can use sample statistics to 
approximate expectations over the posterior.

Problem:Problem: we need to update the samples such that they still 
accurately represent the posterior after the next observation.

Let                     be a set of      fair samples from distribution          , 
then for functions 
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Importance Sampling

Assume we have a weighted sample set

the prediction distribution becomes a linear mixture model

sample

and then sampling from the model proposal pdf

- Can sample from this mixture model by treating the weights   
as mixing probabilities

N
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Cumulative distribution of weights
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Weights in Importance Sampling

Weighted samples                               
Draw samples         from a proposal distribution

weighted 
samples

i.e.                               

Find weights          so that the linearly weighted sample statistics 
approximate expectations under the desired distribution  



Frank Wood  - CS295-7 2005 Brown University

Updating the Weights
The samples from the prediction distribution need to be re-weighted 
such that they still represent the posterior distribution well after a 
new observation:                               

)zxp( :1 kk )zzp(
)zxp()xp(

1:0

1:0
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kkkkz
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representation for 
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likelihood

This is our model 
likelihood

Goes away after re-
normalization.

Goes away after re-
normalization.

Major hand waving here! Inaccuracies abound!
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An algorithmic run-through

Simple particle filter:

draw samples from the prediction distribution

weights are proportional to the ratio of posterior and prediction 
distributions, i.e. the normalized likelihood

[Gordon et al ’93;  Isard & Blake ’98; Liu & Chen ’98, …]

posterior posteriortemporal
dynamics

likelihood

sample sample normalize
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Particle FilterParticle Filter

Isard & Blake ‘96

Posterior )|( 11 −− kk zxp rr
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Particle FilterParticle Filter

Isard & Blake ‘96

Posterior )|( 1:11 −− kk zxp rr

samplesample
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Particle FilterParticle Filter

Isard & Blake ‘96

Temporal dynamics

samplesample

)|( 1−kk xxp

Posterior )( 1:11 −− kk zxp rr

samplesample
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Particle FilterParticle Filter

Isard & Blake ‘96

Temporal dynamics

samplesample

Likelihood )|( kk xzp rr

Posterior

samplesample

)|( 1:11 −− kk zxp rr

)|( 1−kk xxp
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Particle FilterParticle Filter

Isard & Blake ‘96

Temporal dynamics

samplesample

Posterior

Likelihood

normalizenormalize

Posterior

samplesample

)|( 1:11 −− kk zxp rr

)|( :1 kk zxp rr

)|( 1−kk xxp

)|( kk xzp rr
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Sampling

• Many sampling steps in particle filtering.
– Samping from a Gaussian.
– Sampling from a multinomial.
– Sampling from a weighted mixture model.

• More general sampling techniques that we may 
get to later.
– Metropolis-Hastings
– Gibbs
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Sampling from a Gaussian

QLLT =

[ ]Tnτττττ ...,, 210=
r

),(~ QNL µµτ rrr
+

Given )( QN ,µ

Show

And explain how this fact can be used to sample from a Gaussian.

A Gaussian distributionA Gaussian distribution

A Cholesky decomposition 
of the covariance matrix.

A Cholesky decomposition 
of the covariance matrix.

A random vector where 
each element is normal 
with zero mean and unit 

variance.

A random vector where 
each element is normal 
with zero mean and unit 

variance.

[ ] [ ] 0EE == ττ LL

[ ]TT LL ττ rrE=

[ ] TT LL ττ rrE=

Q=

[ ]τrLVar
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Sampling from a Multinomial

Given a weighted sample set

sample

N

1

0
1

Cumulative distribution of weights

}...1);,{( )()( NiwS ii == x
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),(~   QxHz kk
vv Ν

likelihood

observation model

∫ −−−−− = 11111 )|()|()|( kkkkkkk xdZxpxxpZxp vvvvvvv

prior

),ˆ( 11 −− kk PxN),(~ 1 WxAx kk −
vv N

system model

)|()|()|( 1−= kkkkkk ZxpxzpZxp
vvvvvv κ

BAYESIAN INFERENCE

Infer (decode) behavior from firing.
p(behavior at k | firing up to k) =

Kalman Filter
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),(~ 1 tttt WxAx −
vv N

Kalman Filter
Likelihood

Temporal prior

Posterior is also Gaussian

)|( tjt xzp vv
−

)|( 1−tt xxp vv

∫ −−−−= 1111 )|()|()|()|( ttttttttt xdZxpxxpxzpZxp vvvvvvvvv κ

),(~  tttt QxHz vv Ν

Kalman filter.  

Real-time, recursive, decoding.

observation model:

system model:
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11  and ˆ of estimate Initial k-k Px −

Time Update
Measurement Update

Welch and Bishop 2002

KALMAN FILTER ALGORITHM

Prior estimate
Error covariance

Posterior estimate

Kalman gainError covariance
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Factored Sampling

Weighted samples                               

weighted 
samples
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