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Today

• Particle Filter Homework Discussion and Review
• Kalman Filter Review
• PCA Introduction
• EM Review
• Spike Sorting
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Particle Filtering Movies
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Homework Results?

• Better than CC X .5, CC Y .8?  How?
• What state estimator did you use (ML/E[])? Why?
• When did you estimate the state?
• Particle re-sampling schedule?
• Remaining questions?
• Initial state estimate?
• How did the homework synthesize with the lecture 

notes and readings?
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Viewing the Bayesian Recursion after 
implementing Particle Filtering
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Next Homework: The Kalman Filter

• Closed form solution to recursive Bayesian 
estimation where the observation and state 
models are linear + Gaussian noise.

• Seminal paper published in 1960:
– R.E. Kalman, “A New Approach to Linear Filtering and Prediction Problems”
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Where do these equations come from?

• Find an unbiased minimum variance estimator of 
the state at time k+1 of the form

• For        to be unbiased means:

1111 ˆˆ ++++ +′= kkkkk zKxKx

We’ll look at this today.  We’ll look at this today.  

[ ] 0ˆ 11 =− ++ kk xxE
1ˆ +kx

This bit is much trickier.  A 
link to a full derivation is on 

the web.  

This bit is much trickier.  A 
link to a full derivation is on 

the web.  

Excerpted and modified from aticourses.com
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Remember from the previous slide

½ Unbiased Estimate

[ ] 0ˆ 1111 =−+′ ++++ kkkkk xzKxKE
( )[ ] 0ˆ 1111111 =′+′−−++′ +++++++ kkkkkkkkkk xKxKxqHxKxKE

( ) ( )( ) ( )[ ] 0ˆ 111111 =′++−+++−′ ++++++ kkkkkkkkkkk xKwAxqwAxHKxxKE
( ) ( )[ ] 0)(ˆ 1111111 =+−+′+−+−′ +++++++ kkkkkkkkkk qKwIHKxKAHAKxxKE
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Trick alert!

Excerpted and modified from aticourses.com
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Pulling it together (a bit) Remember from the previous slide

( )AHKIK kk 11 ++ −=′

1111 ˆˆ ++++ +′= kkkkk zKxKx

( ) 1111 ˆˆ ++++ +−= kkkkk zKxAHKIx

( )kkkkk xHAzKxAx ˆˆˆ 111 −+= +++

Can get the Kalman gain by 
minimizing the variance of 

the estimation error.

Can get the Kalman gain by 
minimizing the variance of 

the estimation error.
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Good time for a Break

• Changing gears to PCA/EM/Mixture Modeling
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Principal Component Analysis (PCA)

“The central idea of [PCA] is to reduce the dimensionality of a data 
set consisting of a large number of interrelated variables, while 

retaining as much as possible of the variation present in the 
principal components (PCs), which are uncorrelated, and which are 
ordered so that the first few retain most of the variation present 

in all of the original variables.”, I.T. Joliffe

• Example applications
– Compression
– Noise Reduction
– Dimensionality Reduction

• Eigenfaces, etc.
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The Gist of PCA
num_points = 500;
angle = pi/4;
variances = [5 0; 0 .5]'
rotation = [cos(angle) -sin(angle);…

sin(angle) cos(angle)]

data = rotation*(variances*randn(2,1000));
[pcadata,eigenvectors,eigenvalues] = pca(data,2);
recovered_rotation = eigenvectors
recovered_variances = sqrt(eigenvalues)

variances =
5.0000         0

0    0.5000
rotation =

0.7071   -0.7071
0.7071    0.7071

recovered_rotation =
-0.7042   -0.7100
-0.7100    0.7042

recovered_variances =
5.1584         0

0    0.4934
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The Math of PCA

• First step: Find a linear function (a projection) 
of a R.V.     that has maximum variance.  i.e.

• Second through     step: Find the subsequent 
uncorrelated projection with maximum variance 
etc. i.e. 

• Continue until “enough variance” is accounted for 
or up to    , the dimensionality of    .
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Finding a principal component (PC)

• Maximize the variance of the projection:

• Easy to do!  Set 
• Solution: constrain 
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Constrained Optimization

• Use Lagrange multiplier and differentiate:

• So     is an eigenvector of     and    is the 
corresponding eigenvalue.
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Optimal Properties of PC’s

• The second, third, etc. PC’s can be found using a 
similar derivation subject of course to 
additional constraints.

• It can be shown that a choosing B’ to be the 
first q eigenvectors of the covariance matrix   
of x that the orthonormal linear transformation

maximizes the covariance of y.

xBy ′=

Σ



Frank Wood - fwood@cs.brown.edu

-10 -5 0 5 10

-8

-6

-4

-2

0

2

4

6

8

10

Gaussian cloud

The Gist of PCA
num_points = 500;
angle = pi/4;
variances = [5 0; 0 .5]'
rotation = [cos(angle) -sin(angle);…

sin(angle) cos(angle)]

data = rotation*(variances*randn(2,1000));
[pcadata,eigenvectors,eigenvalues] = pca(data,2);
recovered_rotation = eigenvectors
recovered_variances = sqrt(eigenvalues)

variances =
5.0000         0

0    0.5000
rotation =

0.7071   -0.7071
0.7071    0.7071

recovered_rotation =
-0.7042   -0.7100
-0.7100    0.7042

recovered_variances =
5.1584         0

0    0.4934

-20 -15 -10 -5 0 5 10 15
0

10

20

30

40

50

60
Histogram of data projected onto first PC



Frank Wood - fwood@cs.brown.edu

EM for Gaussian Mixture Models

• Expectation Maximization is a recursive method 
for estimating the parameters of data 
distributions with missing or unobserved data.

• In our case, the “missing data” is data class 
memberships.

• This represents a generative view with latent structure.
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Closed form E & M steps for GMM
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From “A Gentle Tutorial of the EM Algorithm and its 
Application to Parameter Estimation for Gaussian 
Mixture and Hidden Markov Models”, Jeff A. Bilmes
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Example Application – Spike Sorting

• Previous Solutions
– Non-parametric template matching
– Various clustering's of principle 

components (Lewiki)
– EM on mixtures of multivariate t-

distributions (Shoham, et al)
– Wavelet packets (Hulata, et al)

• Problems
– Manually determine waveform 

templates
– Manually determine number of 

clusters
– Manually identify noise

– Waveform variability
– Inter-spike interval
– Off-line vs. on-line
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Neural Decoding / Prostheses

Computer cursor and 
keyboard entry Robotic arm

Stimulation of Muscles,
Spinal Cord, and Brain

Voluntary control signal

Decoder (Kalman filter, 
linear filter, etc)

• multi-unit activity
• single unit activity
• EEG, LFP, etc.

Signal

Detection
Spike Sorting

Rate Estimation
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A Slight Untruth has been Implied

• The data you have is sorted horribly.
• Most of the 42 channels you have are “multi-

units” not actually single neurons.
• It is virtually impossible to isolate and record a 

single neuron with perfect certainty with any 
recording technology and is even more difficult 
to do with an array due to its random insertion.
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Spike Sorting.

• Our definition: waveforms 
captured at threshold 
crossings are “sorted” by 
deciding :
– which are “spikes”
– how many neurons there are
– which neurons each came from.
– Not detection!

• Results from Bionic 
microelectrode array.
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Off-line Sorter Screen-Capture
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Spike Sorting’s dirty little secret.

• Inspired by Harris et al (2000) we conducted a study 
of spike sorting subjectivity.
– Real data

• 5 Expert sorters 
• 20 Representative channels

3518273228Units
202351771941509175079699160Spikes

EDCBASubject
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Two people sorting the same channel.

0 0..5 1 1..5 2

Subject D

Seconds
0 0..5 1 1..5 2

Subject E

Seconds

0 100 200 300 400 500 600 700 800 900 1000
µ sec.

Subject D
Noise: 19484
Unit A: 3474

0 100 200 300 400 500 600 700 800 900 1000
µ sec.

Subject E Noise: 15074
Unit A: 4013
Unit B: 3539
Unit C: 332



Frank Wood - fwood@cs.brown.edu

Our Goal

• Better decoding accuracy by way of improved 
spike sorting.

• Better spike sorting for neuroscience would be 
great to achieve as well but is a slightly 
different goal.
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A Greedy Automatic Spike Sorting Algorithm

Initialize mixture model with n mixture 
components by spectral clustering 

ala Ng and Jordan (2001)

Best decoding 
MSE?

For every channel 
in the recording

Optimize model parameters (EM)

Propose 0,2,3… units 
on current channel.

Decode using all channels using 
Kalman filter ala Wu et al (2003)

Yes

No

Assign every channel to 
have 1 unit and decode 

using Kalman filter.  
Record the MSE of the 

reconstruction.

For full details see the paper.
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Why did we talk about PCA?

• The waveforms are largely similar (even 
between two different neurons).

• The intrinsic dimensionality of a waveform is 
probably much lower than the 48 samples we 
had for each.

• Speeds computation considerably and makes 
estimates of mixture model parameters more 
robust.
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Automatic Spike Sorting Visual Results

0 100 200 300 400 500 600 700 800 900 1000

Noise : 16
Unit A: 387
Unit B: 84
Unit C: 325

0 100 200 300 400 500 600 700 800 900 1000

Noise : 42
Unit A: 0
Unit B: 0
Unit C: 0

0 100 200 300 400 500 600 700 800 900 1000

Noise : 7
Unit A: 544
Unit B: 0
Unit C: 0

0 100 200 300 400 500 600 700 800 900 1000

Noise : 75
Unit A: 556
Unit B: 578
Unit C: 0

Waveforms

Corresponding 
2 largest PCA 
coefficients.
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Decoding Results 

• Kalman filter, trained on 3 minutes of pinball data, average 
results for 5 one minute decoding segments.

11.30 +/- 1.15625861114Auto Weighted
11.31 +/- 1.33625861114Auto Max
12.78 +/- 1.8986026196None
13.28 +/- 1.54860261288Random
13.46 +/- 2.5454799392Ave. Human
12.37 +/- 1.2264242288D
13.37 +/- 1.5245622178C
16.16 +/- 2.3833565696B
11.45 +/- 1.39757674107A
MSE (cm^2)SpikesNeuronsSubject

Rank: Auto Sorted → No Sorting → Randomly Sorted → Human Sorted !

Actual Monkey
hand position

Neural 
Reconstruction
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Conclusions and Discussion

• This automatic sorting algorithm produces better spike 
trains for neural decoding.

• Maybe spike sorting isn’t necessary for good decoding?
– Hints at using a different signal instead?

• Linking decoding to sorting may not identify 
physiological neurons.

• Next Steps
– Fully leverage probabilistic interpretation for enhanced rate 

estimation.
– Different cost function.
– Extend to continuous signal.
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Next Week

• Fun!
• Crazy papers – thought provoking ethics article.

• Get the Kalman filter assignment out of the way 
quickly.  Given what you know now it should be 
quite easy!


