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From what part of
the brain should

we record?
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Motor System

,f"ﬁ_\\___ Primary motor cortex (M1)
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Signing Your Name

Prefrontal Cortex: I’ll sign my

e oss 5 o oy
Posterior Parietal: combine visual . P M1 sulcus o, ~._cortex
and somatosensory informationto - Area 5
localize pen wrt body. contex Area 7

Premotor cortex: plan motion of
hand wrt target path.

Cerebellum: formulate details of
movement in terms of dynamics.

Primary Motor Cortex: sends
motor commands down spinal cord.

Purves D. et al. (1997)

Brain Stem maintains stable posture
during writing.
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Summary

Posterior Parietal Cortex: Basal Ganglia:

Transforms visual cues into plans @ Learning movements,

Motor cortex: Initiating and Thalamus

directing voluntary movements Cerebellum:
w Learning movements

l and coordination
Brainstem Centers: \
Postural control. Visual cues

!

Spinal Cord: Reflex coordination = Motor neurons

'
‘[ Skeletal Muscles
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@ @ Motor Control
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Controlling a Motor Prosthesis

MI arm area of motor cortex.
* know that activity of cells related to hand motion
* accessible (in monkeys and humans)
* hypothesis: natural for controlling continuous
motion of a prosthesis

Michael J. Black - January 2005 Brown University
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How can we
record the neural
signals?




' Sensing the Brain
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5 Cyberkinetics Array

Extra-cellular recording

100 “ideal” microelectrodes
10x10 grid,

4x4 mm platform

1 or 1.5 mm long, Si shafts,
Pt coated tips

Glass separation

Parylene insulation coating

Brown University
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W] [ Array

. . A - platform
Utah = Bionic = w:t?}*;[]%al—lair

Cyberkinetics array. thin probes
Fixed electrode depths ;

- can't move them to

get a better signal.

Take what you get and
make the most of it.

Inventor: Richard Normann, Univ. of Utah.
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Surgical Implantation

WARNING:

Graphic images of surgical
procedure follow.




o Preclinical Safety:
o Removal and Re-implantation

First Implant Second Implant

o YT

BT .

o =,~s~‘»3g;#€~¢é®saﬁﬁguﬁnaﬁaﬂ\fhﬁn\ e,

Donoghue Lab
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o |
Bone flap fixation § » g (

Surgical Methods

- _‘-.-) Skin closure
Intended to follow human neurosurgical Percutaneous
Connector

procedures and methods.
* Limit duration
 Eliminate most foreign materials
* use established surgical methods

Brown University
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 m Chronic Implants

* 39 implants in 17 macaque
monkeys

(February 1996-April 2003)
* Recordings for 1098 days

n=80t7 in
3 recent MI implants

Michael J. Black - January 2005
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Recording Session (over 110 Days)

Many neurons every day (19 tests over
110 days)

Blue - no recording

Donoghue Lab
Red - best recordings J

Brown University
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5 Implant Challenges

 Electronics
— Miniaturization
— Encapsulation
— Telemetry
— Heat dissipation
— Low power

— On board signal il .

prOCESSing and Nurmikko and Patterson
Spl ke sortl ng Chip-scale integration of array and electronics.

Michael J. Black - January 2005 Brown University




BIC Sensor Assembly Stimulus Array
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[ntegrated Microslectrode Array
with Ultralow Power Preamplifiers,
Multiplexer, and Buffer (~10 m'\/)

Photovoltaic Power
Supply, ADC, Clock
Circuits, VCSEL
(laser), etc.

Skin

Tether cable
(minimal)

Michael J. Black - January 2005

Optical fiber: (laser light)

e Power/Clock Input
e Signal out (> 1 Gb/s)

Brown University
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What do the

neural signals
encode?




op LLanguage of the Brain
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Michael J. Black - January 2005

“If spikes are the language
of the brain, we would like
to be provide a
dictionary... perhaps even
providing the analog of a
thesaurus.”

Rieke, et al 1997.



Some Terminology

Sequence of spikes from a single neuron = "spike train”

> LMD ) TIARDNARL | I
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w5 Neural “Coding”

* How do cells represent information?

* Ie, how Is representation “coded” In action
potentials.

e If we understand the encoding then we can tackle
the “decoding” problem.

e inference — from activity to encoded property

Michael J. Black - January 2005




Neural Coding

What are the possibilities?

You've got action potentials and now
you want to represent "move the

hand to the right". How might you
do it?

Michael J. Black - January 2005
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) Neural Coding

What are the possibilities?
1. Localist encoding in on/off response .

2. Rate coding.

3. Precise timing — pattern of spiking carries
Information.

4. Ensembles code information that individuals can’t.

5. Synchronous firing within and across ensembles (it
IS the Interdependencies that matter).

Michael J. Black - January 2005
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w Neural Coding

e |_ocalist view — each neuron codes a particular value
e “computer”-like model where neurons are binary

« at the low level cells represent things like
orientation

e at the high level they represent complex
Information

e Problems?

Michael J. Black - January 2005
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) Neural Coding

Population codes
o distributed representation

e information encoded in the overall activity of many
cells

e graded response — level of activity conveys
Information. Not binary.

Michael J. Black - January 2005




 E Orientation Selectivity

Screan

J = Light stimulus
'/‘ —— Stimulus Output from cell
order of
= on = on

receptive field

> - on e on
\
AL MT-—T
: ™ ) ~
Microelectrode — SHAN
in striate cortex “

recording action
potentials

Hubel & Weisel, 1962
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@ Cracking the Neural Code

[

"rasters’

Trial number

133

89

Firing rate
44

Time (ms)
Source: Rob Kass
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w Orientation Tuning

A B

fiHz)

§ (orientation angle in degrees)

Brown University
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@ Estimating Firing Rate
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Source: Zemel & McNaughton, NIPS2000 tutorial

rate = (# of spikes in time bin) / (length of time bin)

Related to the probability a cell will spike (fire) in a
given time interval.

Typically consider 50-70ms time bins.

Michael J. Black - January 2005
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