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Motivation
We want a model that:

1)  Assigns similar data to similar probabilities
          for any application-appropriate definition of “similar”

kernel functions

2)  Complexity of f(x) grows with additional data
non-parametric

3)  Supports inference tasks
 encode prior beliefs about f(x)

            draw new samples x from  f(x)
            evaluate f(x) for any x  

Gaussian Process framework = natural answer 



  

Contributions

Naïve Logistic GP Density Model is problematic

[Adams et al] is exciting because we can ... 

• draw exact, exchangable samples from f(x)
• handle high-dimensional X in practice
• avoid costly + problematic estimation of norm. constant



  

Model



  

Sample Densities



  

Sample Densities



  

How to sample from f(x)?

when g(x) is unknown, we can still use this idea!



  



  



  



  



  



  



  



  



  



  

Sampling by discovery

• Samples {x1  x2  ... xN } are exact and exchangeable
• Discovered latent function g(x) in process

• well, only  { g( x1 ), g( x2 ), … g( xN  ) }
• Never needed that pesky normalization constant

View this sampling scheme as generative process



  

Inference
Goals:

obtain estimates of g(x) 
     generate samples from f(x)  or predictive distribution

(optimize hyperparams)

Machinery:

retrospective MCMC  [see Iain Murray's PhD thesis]

(1) Latent History sampling
- focus of current work

(2) Exchange sampling
- requires more evaluations of g(x)
- in practice, worse than (1)



  

Sampler state augmented by:
   rejected data points      X = {x_1, x_2, … x_M}
   corresponding g(x) values   G= { g( x_1), g(x_2),… g(x_M) }

“pinning canvas down...”

MCMC result:
   samples { M, Gaccept, Greject, Xreject } from posterior given X    

 (can also include hyperparams )

Assume observed X were accepted from generative process, 
we can recover rejected X and g(x) via MCMC 



  

Comparing to alternate methods
Parzen Windows

Infinite Mixture of Gaussians ( iMoG )

Dirichlet Diffusion Trees  ( DFT ) 



  

Toy Data



  

Macaque Skull “Reconstruction”



  

Concerns

Computational Complexity

-  requires matrix decomp:   O( (N + M)3 )
M (# rejections) can be arbitrarily large!

-  MCMC sampler efficiency
no guarantees on convergence time
poor acceptance rates in high dimensions 

Advantages over alternative models?



  

Discussion Prompts

1) Is the GP Density Sampler worth it?
- why not just use iMoG ?

2) What are the killer apps?

3) What's involved in a data-space other than        ?

4) Possible to use alternative inference ?
- other MCMC methods
- variational Bayes
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