The Gaussian Process Density Sampler

Ryan Prescott Adams* Cavendish Laboratory University of Cambridge Cambridge CB3 0HE, UK rpa23@cam.ac.uk Iain Murray Dept. of Computer Science University of Toronto Toronto, Ontario. M5S 3G4 murray@cs.toronto.edu David J.C. MacKay Cavendish Laboratory University of Cambridge Cambridge CB3 0HE, UK mackay@mrao.cam.ac.uk

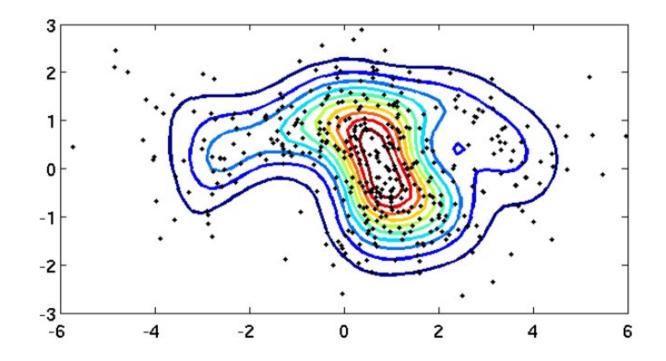
NIPS 2008

as told by Mike Hughes

*some text/figures courtesy of Adams' online presentation

The Density Modeling Problem The setup:

- ► Data $\{x_n\}_{n=1}^N$ from an unknown density f(x)
- Prior beliefs about f(x)
- What is the posterior on f(x)?



Motivation

We want a model that:

- Assigns similar data to similar probabilities for any application-appropriate definition of "similar" kernel functions
- 2) Complexity of f(x) grows with additional data non-parametric

3) Supports inference tasks

 encode prior beliefs about f(x)
 draw new samples x from f(x)
 evaluate f(x) for any x

Gaussian Process framework = natural answer

Contributions

Naïve Logistic GP Density Model is problematic

$$g(x) \sim \mathcal{GP}(0, K(x, x'))$$
$$f(x) = \frac{\exp\{g(x)\}}{\int dx \, \exp\{g(x)\}}$$

[Adams et al] is exciting because we can ...

- \cdot draw exact, exchangable samples from f(x)
- · handle high-dimensional X in practice
- · avoid costly + problematic estimation of norm. constant

Model

$$f(x) = \frac{1}{\mathcal{Z}_{\pi}[g]} \Phi(g(x)) \pi(x)$$

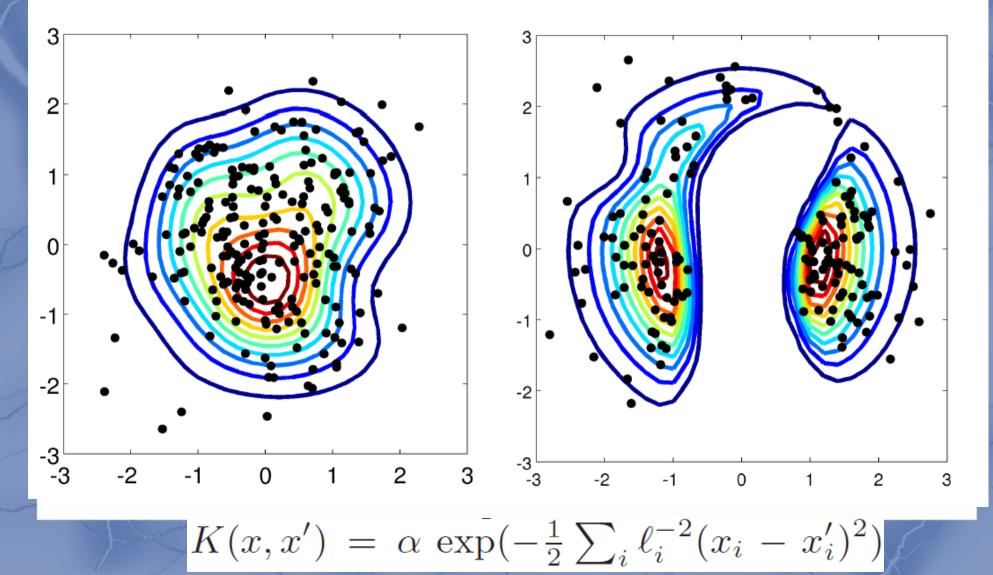
- g(x) has a GP prior.
- $\pi(x)$ is a known "base density."
- Φ(x) is nonnegative and bounded. e.g.
 logistic Φ(z) = (1 + exp(-z))⁻¹

$$K(x, x') = \alpha \exp(-\frac{1}{2}\sum_{i} \ell_{i}^{-2} (x_{i} - x'_{i})^{2})$$

Sample Densities

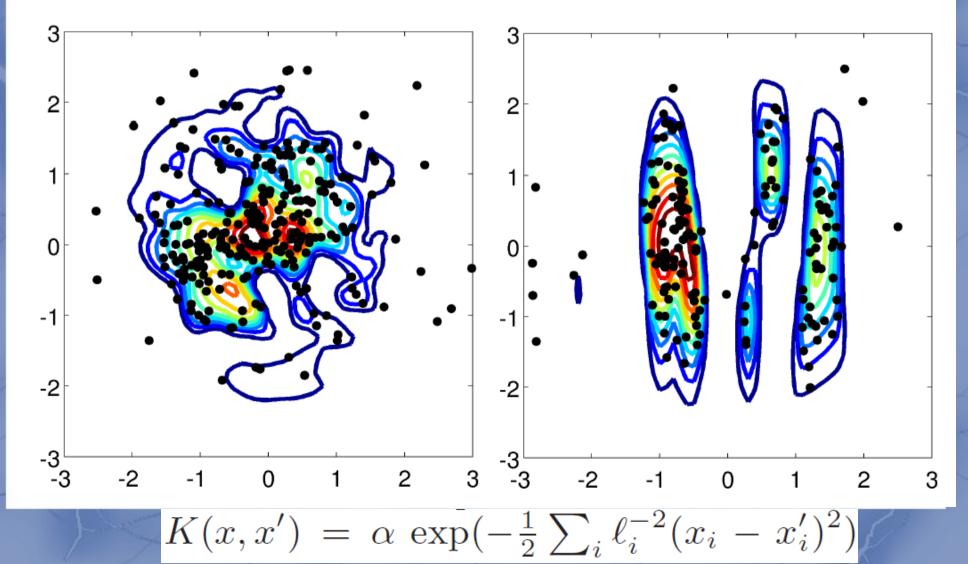
$$\ell_x = 1, \, \ell_y = 1, \, \alpha = 1$$

$$\ell_{x} = 1, \, \ell_{y} = 1, \, \alpha = 5$$



Sample Densities

 $\ell_x = 0.25, \, \ell_y = 0.25, \, \alpha = 2$ $\ell_x = 0.25, \, \ell_y = 2, \, \alpha = 5$



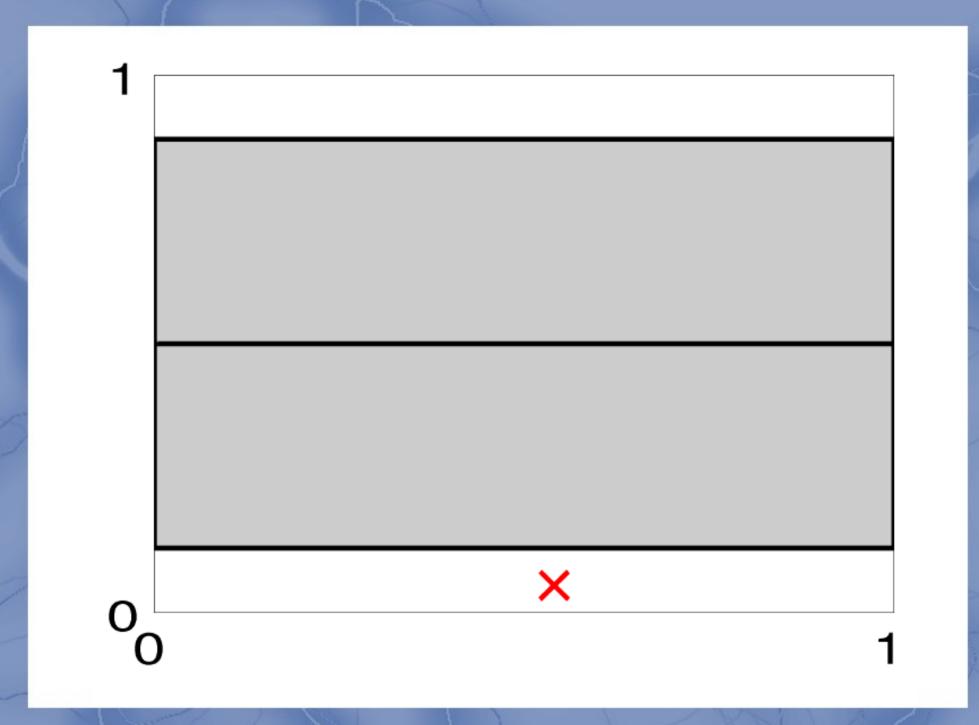
How to sample from f(x)?

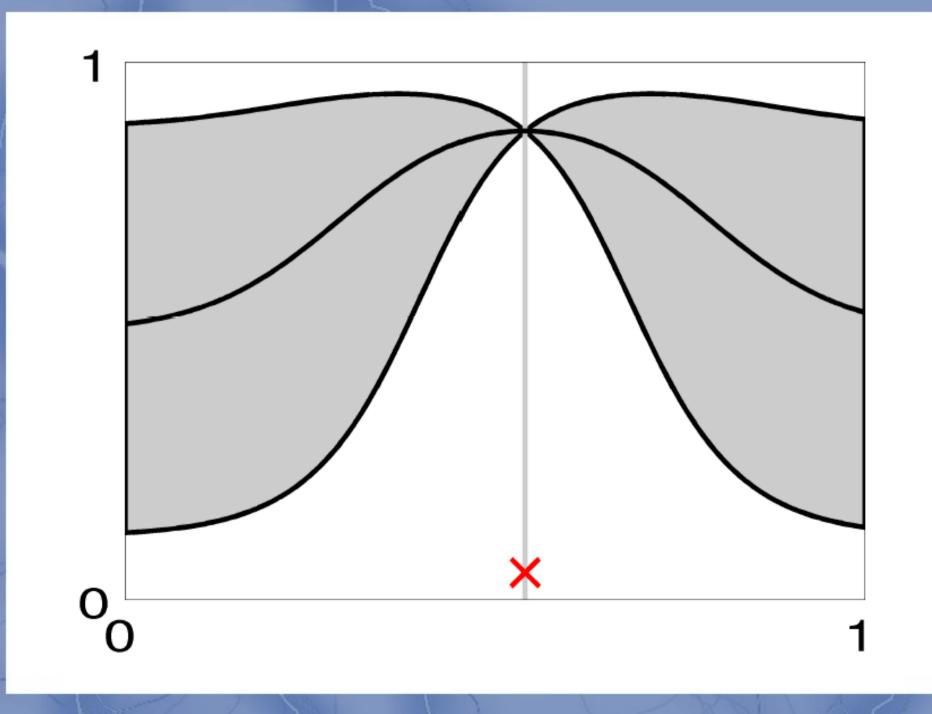
$$f(x) = \frac{1}{\mathcal{Z}_{\pi}[g]} \Phi(g(x)) \ \pi(x)$$

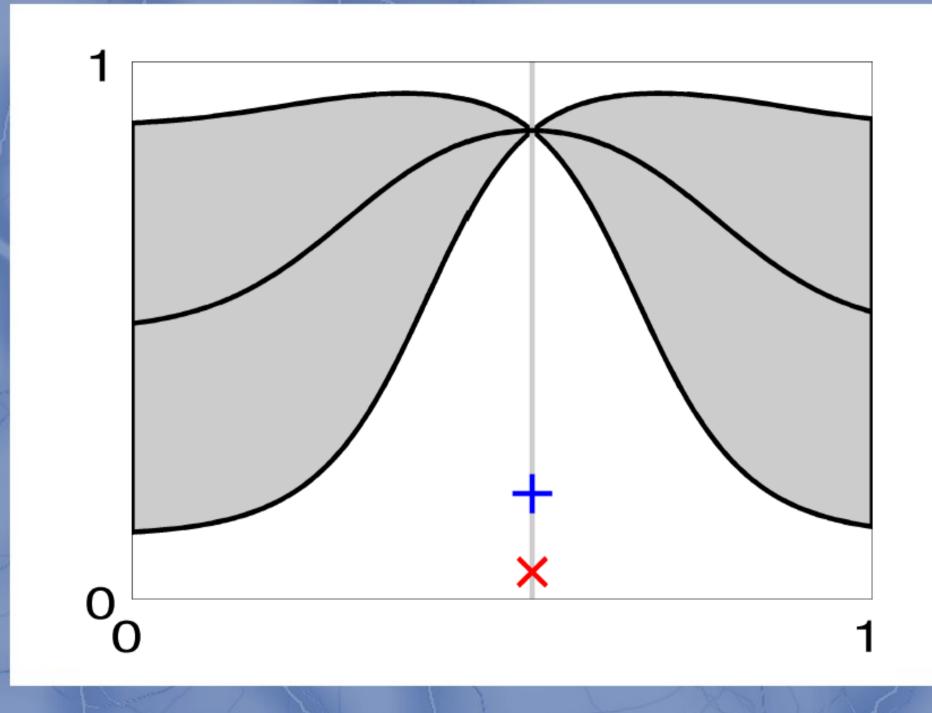
What if we knew g(x)? Rejection sampling:

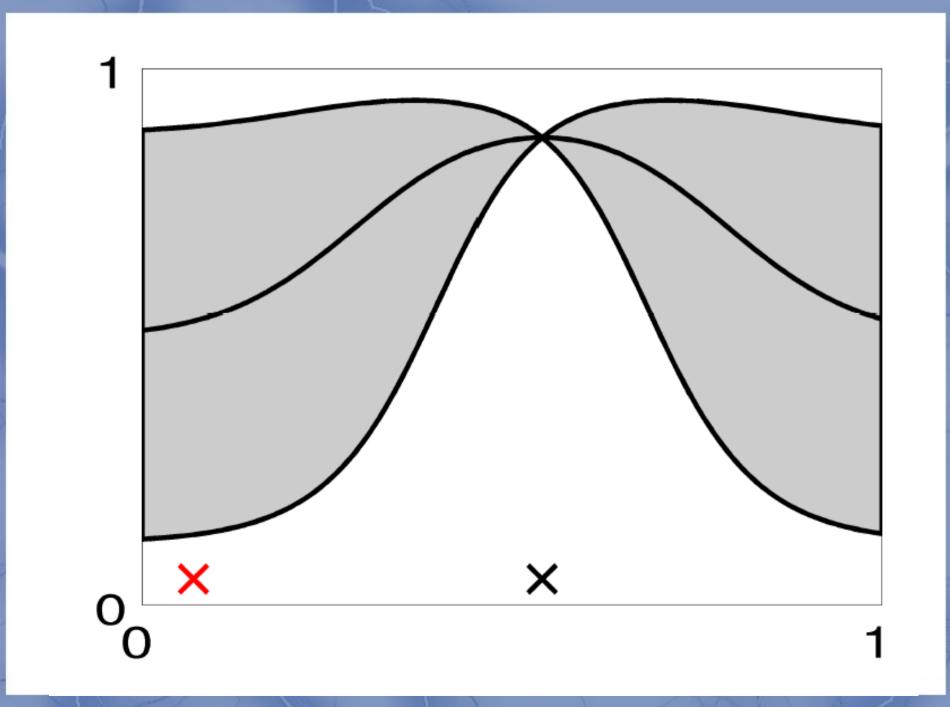
- 1. Draw \tilde{x} from $\pi(x)$.
- 2. Draw r from UNIFORM(0, 1)
- **3**. Accept if $r < \Phi(g(\tilde{x}))$
- 4. Goto 1

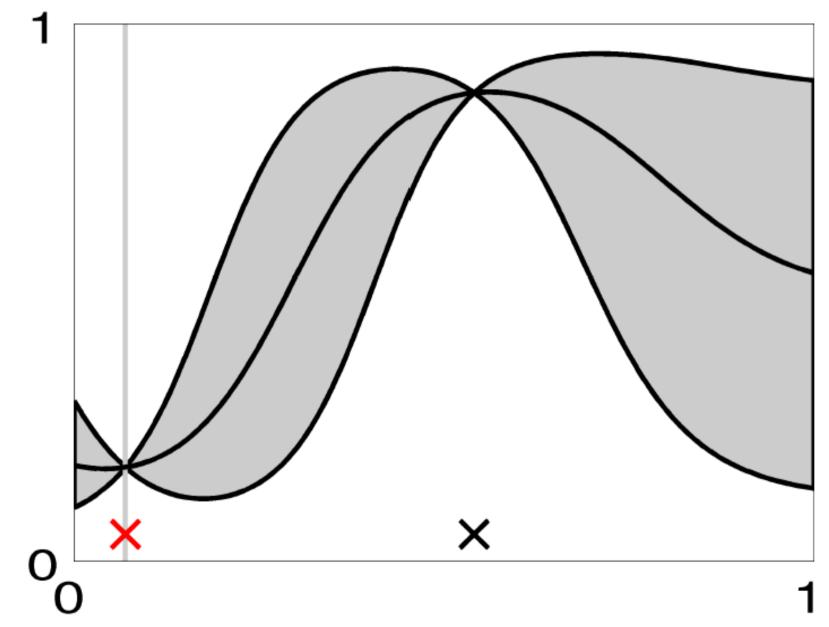
when g(x) is unknown, we can still use this idea!



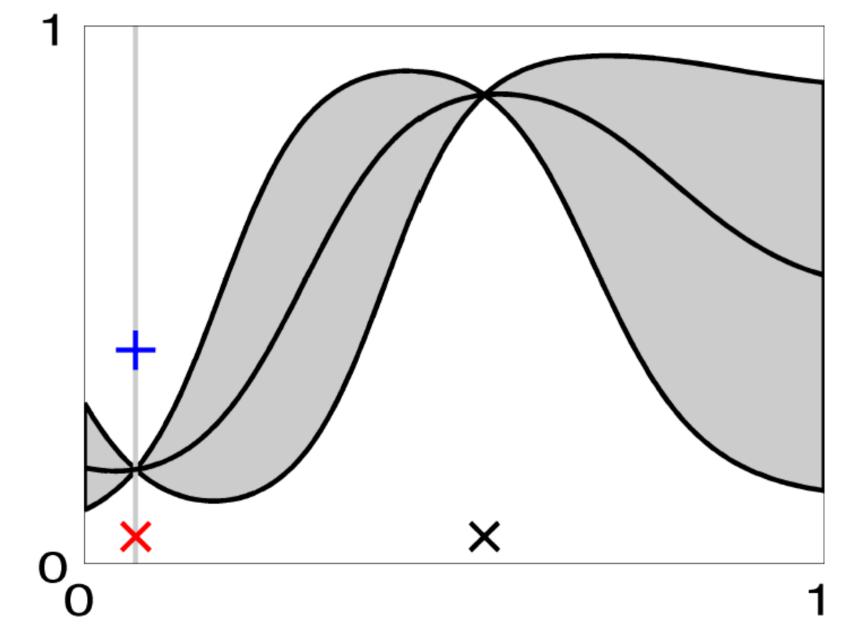


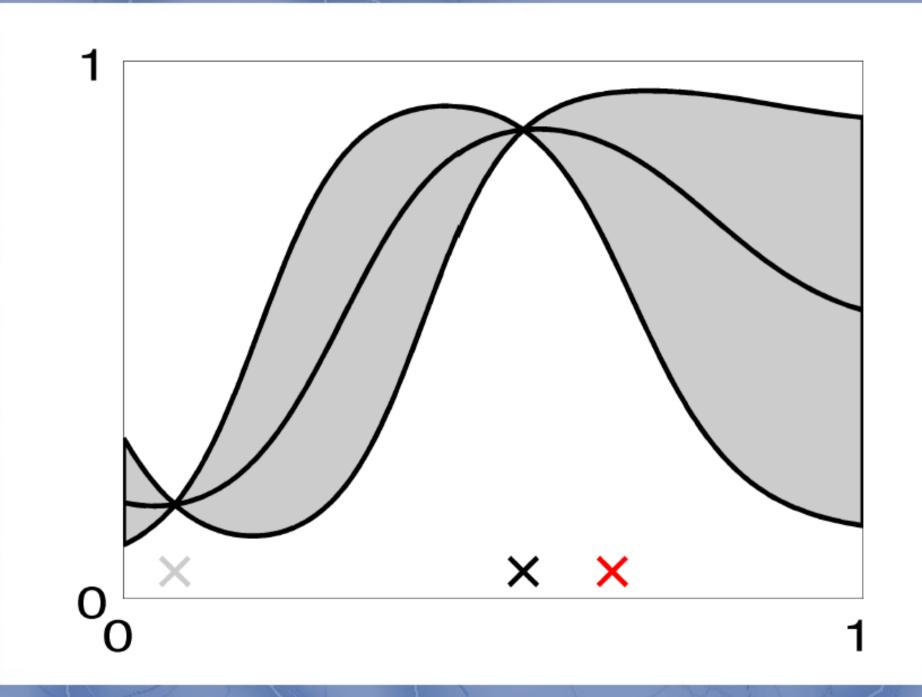


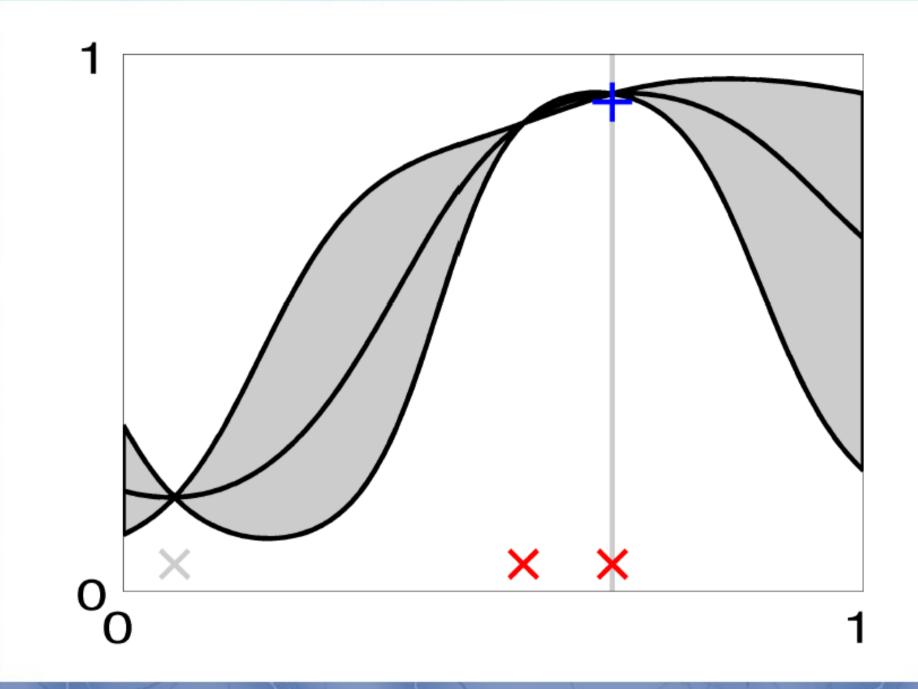


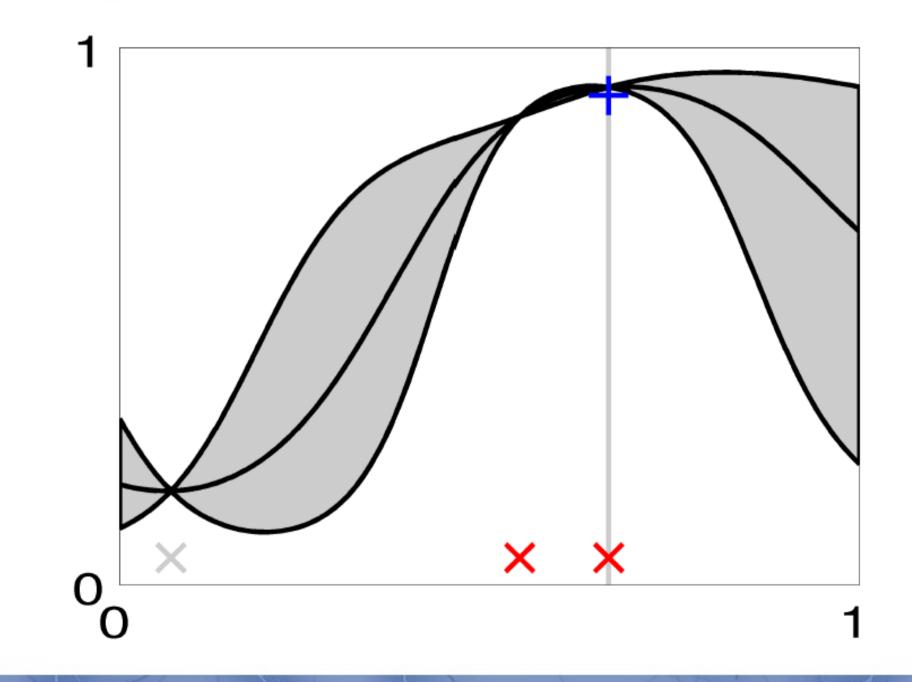


_









Sampling by discovery

- · Samples $\{x_1 \ x_2 \ \dots \ x_N\}$ are exact and exchangeable
- · Discovered latent function g(x) in process
 - well, only $\{g(x_1), g(x_2), \dots g(x_N)\}$
- Never needed that pesky normalization constant

View this sampling scheme as *generative process*

Inference

Goals:

obtain estimates of g(x) generate samples from f(x) or predictive distribution (optimize hyperparams)

Machinery:

retrospective MCMC [see Iain Murray's PhD thesis]

(1) Latent History sampling

- focus of current work
- (2) Exchange sampling
 - requires more evaluations of g(x)
 - in practice, worse than (1)

"pinning canvas down..."

Assume observed X were accepted from generative process, we can recover *rejected X* and g(x) via MCMC

Sampler state augmented by:

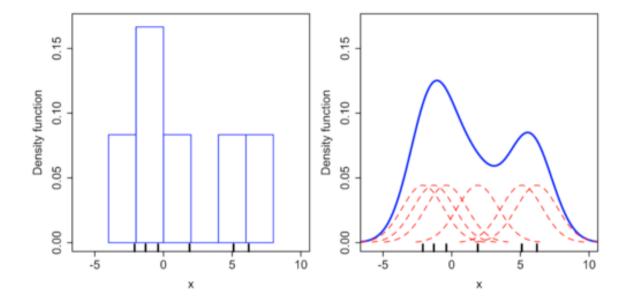
rejected data points $X = \{x_1, x_2, \dots x_M\}$ corresponding g(x) values $G = \{g(x_1), g(x_2), \dots g(x_M)\}$

MCMC result:

samples { M, G_{accept}, G_{reject}, X_{reject} } from posterior given X (can also include hyperparams)

Comparing to alternate methods

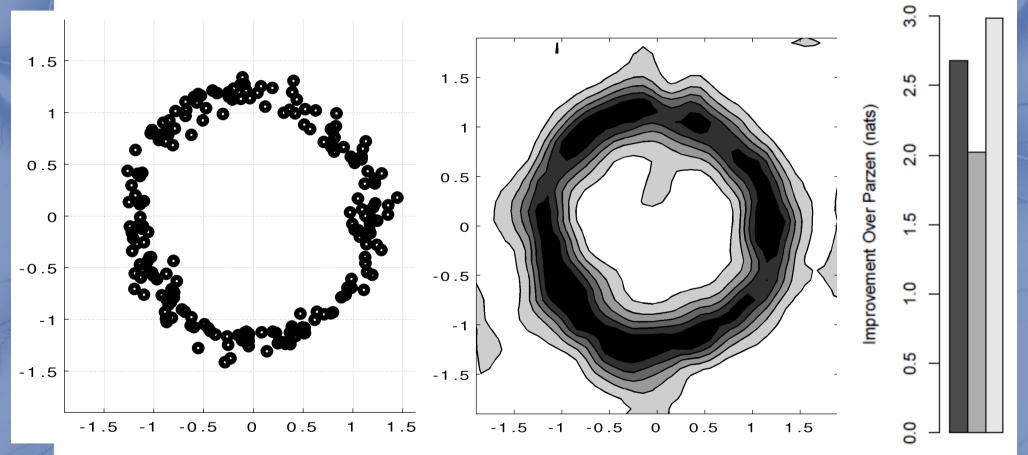
Parzen Windows



Infinite Mixture of Gaussians (iMoG)

Dirichlet Diffusion Trees (DFT)

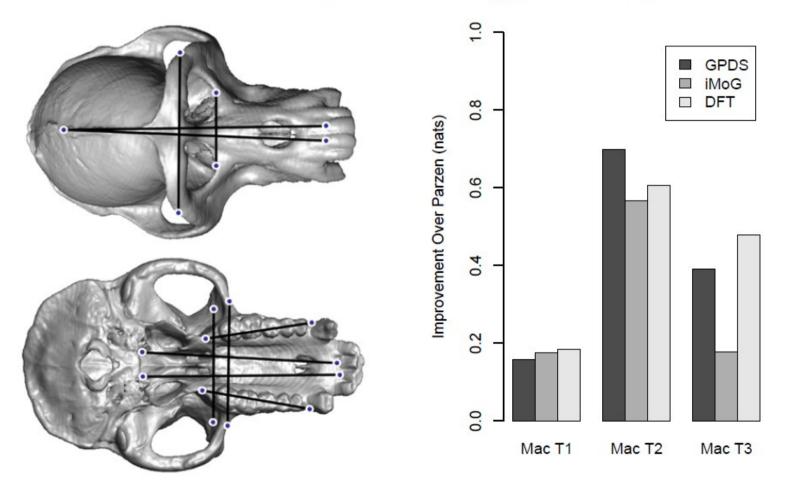
Toy Data



Ring

Macaque Skull "Reconstruction"

10 linear distances, 200 training, 28 test, 3 trials



Concerns

Computational Complexity

- requires matrix decomp: O((N + M)³)
 M (# rejections) can be arbitrarily large!
- MCMC sampler efficiency no guarantees on convergence time poor acceptance rates in high dimensions

Advantages over alternative models?

Discussion Prompts

1) Is the GP Density Sampler worth it? - why not just use iMoG ?

2) What are the killer apps?

3) What's involved in a data-space other than \mathbb{R} ?

- 4) Possible to use alternative inference ?
 - other MCMC methods
 - variational Bayes