Applied Bayesian
Nonparametrics
Special Topics in Machine Learning
Brown University CSCI 2950-P, Fall 2011
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Gaussian Process Kernels & Features

p(y) =N(y|0,a” 0d")
— N(y | OaK)

Kij = k(zi,z;) = ¢(z;)" ¢(z;)

* Features and kernels are dual views of the same models

« Kernel representation useful when the number of features
IS very large, or even infinite

* Feature representation useful when the amount of data
very large, and a moderate number of important features
can be identified



1D Gaussian Process Regression
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Squared exponential kernel or radial basis function (RBF) kernel
has a countably infinite set of underlying feature functions



2D Gaussian Processes
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General Issue: Local Optima
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General Trick: Nonlinear Transforms

Board: Parametric versus nonparametric generalized linear models
data Log-Likelihood
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Aside: Loss & Binary Classification
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Discrete Distributions

Categorical Distribution:

p(z | m TK) = ﬁ CND 5(x, k) 2 { 1 r =k
A / PEEEEEEED — lk r,Kk)= N ’
k=1 O £r 75 L

 When K=2, becomes Bernoulli distribution (one parameter)

Multinomial Distribution:

K L
L , ,
])(;17(1)3"'3;17(11) ‘ ﬂ-l:'--aﬂ-K) — 1—[ (,k' | I '/Tgk C/k é E O(I(e):ll)

« Probability of collection of L categorical outcomes,
ignoring the order in which those outcomes occurred
 When K=2, becomes binomial distribution



Multinomial Simplex




Exponential Families

* Natural or canonical parameters determine log-linear
combination of sufficient statistics:

p(z | 0) =v(z)exp {Z OaGal(T) — (9)}

ac A

» Log partition function normalizes to produce valid
probability distribution:

d(0) = log/ r)exp {Z Oada(x } dx

ac A

oL {9 cRM | &(6) < oo}



Sufficiency

Theorem 2.1.2. Let p(x | 0) denote an exponential family with canonical parameters 0,
and p(0 | \) a corresponding prior density. Given L independent, identically distributed
samples {xOYL_  consider the following statistics:

L
H(zV), .. L))y { > da(z9) aE.A} (2.24)

/=1

These empirical moments, along with the sample size L, are then said to be parametric
sufficient for the posterior distribution over canonical parameters, so that

p(0 |20, 2B X)) =pO | (=D, ... 2B L)) (2.25)
Equivalently, they are predictive sufficient for the likelihood of new data :

p(@|zW, . 2D N =pz | oW, .. 2B LN (2.26)



Conjugate Priors

* For any family of distributions with hyperparameters A:

p(@ |z, N) xp(x|0)p(@| N) x p(9 | /_\)

« Excluding degeneracies, only possible for exponential families:

p(x | 0) r)exp {E Oada(T) — )}

ac A

p(0 | \) = exp {Z Daroda — Ao®P(6) — Q()\)}

ac A

Q(\) = log / expq Y Badoda — Ao®(6) 3 db
©

ac A



Conjugate Posteriors

Proposition 2.1.4. Let p(x | ) denote an exponential family with canonical param-
eters 0, and p(0 | \) a family of conjugate priors defined as in eq. (2.28). Given L
independent samples {x(e)}{;zl, the posterior distribution remains in the same family:

p(0]zWM, .. 2B N =p(6]N) (2.31)

L L _ Aoda+ 3y Ga(2?)
AO—)\O‘FL )\a— /\o—I—L

ac A (2.32)

Integrating over ©, the log—likelihood of the observations can then be compactly written
using the normalization constant of eq. (2.29):

L
log p(z®, ... aE) | \) = Q(A) — QN + Z logv(z®) (2.33)
(=1



Finite Dirichlet Distributions

K
L F(Zk Qk) ,/Tak—l

p(m | a) = ag > 0
[1x (o) P .
o K
_ Zk A
Eq|mk] = - ap = Zak
k=1
K —1 84y
Var, |m.| = oL — —
« Beta distribution is special case where K=2:
['(ao+ (3
p(m | o, B) = Cht )’/Ta_l(l—’/T)’B_l a, 3 >0

['(a) T'(5)



Beta Distributions
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Beta Distributions
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Dirichlet Distributions
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Dirichlet Distributions

»

1 1
m ~ Dir(1,1,1) m ~ Dir(4,4,4)

-

1 1
m ~ Dir(4,9,7) m ~ Dir(0.2,0.2,0.2)



Posteriors and Marginals

C + QU
r=k|zW,. . L) o) = =F
pa =k |2, o0 0) = THLE
(m1 + mo, 73, ..., 7K) ~ Dir(a1 + a9, as, ..., ak)

mx ~ Beta(ag, ag — ag)



A Sequence of Beta Posteriors
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De Finetti's Theorem

* Finitely exchangeable random variables satisfy:
p(z1,...,xN) = p(;z?,r(l), . ,LITT(N)) for any permutation 7(-)

« A sequence is infinitely exchangeable if every finite
subsequence is exchangeable

* Exchangeable variables need not be independent, but
always have a representation with conditional independencies:

Theorem 2.2.2 (De Finetti). For any infinitely exchangeable sequence of random
variables {z;}:2, x; € X, there exists some space ©, and corresponding density p(f),
such that the joint probability of any N observations has a mizture representation:

N
p(z1,29,...,2N) = / p(0) Hp(;ri 1 0) db (2.77)
© i=1

When X is a K—dimensional discrete space, © may be chosen as the (K — 1)—simplex.
For FEuclidean X, © is an infinite—dimensional space of probability measures.



De Finetti's Directed Graph
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Gaussian Mixture Models
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Gaussian Mixture Models

Surface Plot of Joint Density,
Marginalizing Cluster Assignments



Generative Gaussian Mixture Samples
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Finite Bayesian Mixture Models

 Board: Assignment variable and distribution representations



Dirichlet Processes




Dirichlet Processes

Theorem 2.5.1. Let H be a probability distribution on a measurable space ©, and o a
positive scalar. Consider a finite partition (Ty,...,Tk) of ©:

K
JTk=0 TiNT, =0  k#¢ (2.165)
k=1

A random probability distribution G on © s drawn from a Dirichlet process if its mea-
sure on every finite partition follows a Dirichlet distribution:

(G(T}),...,G(Tx)) ~ Dir(aH(TY),...,aH(Tk)) (2.166)

For any base measure H and concentration parameter «, there exists a unique stochastic
process satisfying these conditions, which we denote by DP(«a, H).

Proof Hint: Kolmogorov’s Theorem requires consistency
of the specified finite-dimensional marginal distributions

(7‘(1—|—7T2:7T3,...,7TK) NDlr(Q1+Q20~3~QK>

Tk ~ Beta(ag, ap — ag)



DP Posteriors and Conjugacy

Proposition 2.5.1. Let G ~ DP(a, H) be a random measure distributed according to
a Dirichlet process. Given N independent observations 0; ~ G, the posterior measure
also follows a Dirichlet process:

N
- 1
p(G | 6r....,05,a,H) = DP (a FN (ot +;5@-)) (2.169)

Proof Hint: For any finite partition, we have
p((G(Th),...,G(Tk)) | 0 € Ty) = Dir(aH(T}),...,aH(Ty) + 1,...,aH(Tk))



DPs are Neutral: “Almost” independent

The distribution of a random probability measure G
Is neutral with respect to a finite partition (Ty,....Tk) iff

- GTe) |,
G(Tk) is independent of { = G(Ty) ’ U+ k}

given that G(Ty) < 1.

Theorem 2.5.2. Consider a distribution P on probability measures G for some space
©. Assume that P assigns positive probability to more than one measure G, and that
with probability one samples G ~ P assign positive measure to at least three distinct
points 0 € ©. The following conditions are then equivalent:

(i) P =DP(a, H) is a Dirichlet process for some base measure H on ©.
(ii) P is neutral with respect to every finite, measurable partition of ©.

(iii) For every measurable T C ©, and any N observations 0; ~ G, the posterior
distribution p(G(T) | 01, ..., HN) depends only on the number of observations that
fall within T (and not their particular locations).



DPs and Stick Breaking

Theorem 2.5.3. Let m = {mx}zo; be an infinite sequence of mizture weights derived
from the following stick—breaking process, with parameter o > 0:

By ~ Beta(l, ) k=1,2,... (2.174)

k—1
T — Bk H(l — Bg) — 8].3 (1 —

(=1

ol

-1
’/Te) (2.175)
1

~
I

Gwen a base measure H on ©, consider the following discrete random measure:
oo
G(0) = md(0,0) O ~ H (2.176)
k=1

This construction guarantees that G ~ DP(«, H). Conversely, samples from a Dirichlet
process are discrete with probability one, and have a representation as in eq. (2.176).

« Board: Intuition for why DP samples must be discrete



DPs and Stick Breaking
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DPs and Polya Urns

Theorem 2.5.4. Let G ~ DP(«a, H) be distributed according to a Dirichlet process,
where the base measure H has corresponding density h(6). Consider a set of N obser-

vations 0; ~ G taking K distinct values {Gk}szl. The predictive distribution of the next
observation then equals

K
_ _ _ 1 -
p(ON_H =0 | 01, .. .,QN,Q,H) = at N (O{h(e) -I- E Nko(O,Hk.)) (2180)
' k=1

where Ny is the number of previous observations of Ok, as in eq. (2.179).

Proof Hint: Posterior mean after N observations equals

E[G(T) | 61,...,0n,a,H] = — v | aH(T) +k§::1Nk69k(T)
N
N 257°6(6;.65) k=1,....K



Chinese Restaurant Process
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D(z — 2| 21....,.2N.(0) = Ni.o(z. k Yo(z. k
plentt == |21, 2n,0) = —— (glj (2 k) + ad(z >>




DP Mixture Models




Samples from DP Mixture Priors
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Samples from DP Mixture Priors
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Samples from DP Mixture Priors




Views of the Dirichlet Process

» Implicit stochastic process: Finite Dirichlet marginals

» Explicit stochastic process: Normalized gamma process

* Implicit stochastic process: Neutrality

 Stick-breaking construction

« Marginalized predictions: Polya urn, or (almost)
equivalently the Chinese restaurant process

Later in this course:

 Modeling: Generalize one of these representations, to get
a fancier (but usually less tractable) process

* Inference: Deal with infinite-dimensional processes by
analytic integration, or finite truncation (static or dynamic)



