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Finite Dirichlet Distributions
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Dirichlet Distributions
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Dirichlet Processes

E[G(T)] = H(T) G ~ DP(a, H)

For any finite partition
K
JTk=0 TuNTy=0  k#/¢
k=1

the distribution of the measure of those cells is Dirichlet:

(G(Ty),...,.G(Tk)) ~ Dir(aH (1Y), ..., aH(TK))



The Stick-Breaking Construction:
DP Realizations are Discrete

Theorem 2.5.3. Let m = {mx}ze; be an infinite sequence of mizture weights derived
from the following stick—breaking process, with parameter a > 0:

B ~ Beta(1, @) k=1,2,... (2.174)
k—1 k—1

Tk :Bk H(l —}Bg) :Bk(l —Z’/Tg) (2175)
(=1 (=1

Given a base measure H on ©, consider the following discrete random measure:
oo
G(0) = md(0,0) O ~ H (2.176)
k=1

This construction guarantees that G ~ DP(a, H). Conversely, samples from a Dirichlet
process are discrete with probability one, and have a representation as in eq. (2.176).



Dirichlet Process Mixtures
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Dirichlet processes define a prior distribution
on weights assigned to mixture components:
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Stick-Breaking Construction: Sethuraman, 1994



Dirichlet Stick-Breaking
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Why the Dirichlet Process?

p(x) = > mpN(xz|0,Ag)
k=1

Nonparametric = No Parameters

« Model complexity grows as data observed:
» Small training sets give simple, robust predictions
» Reduced sensitivity to prior assumptions

Flexible but Tractable
 Literature showing attractive asympftotic properties

» |Leads to simple, effective computational methods
» Avoids challenging model selection issues

Ferguson 1973; Sethuraman 1994



DPs and Polya Urns

Theorem 2.5.4. Let G ~ DP(«a, H) be distributed according to a Dirichlet process,
where the base measure H has corresponding density h(6). Consider a set of N obser-

vations 0; ~ G taking K distinct values {Hk}szl. The predictive distribution of the next
observation then equals

1

K
p(ONs1=0101,...,08,0, H) = — N (ah(e) + ZA‘kd(e,ek)> (2.180)
' k=1

where Ny is the number of previous observations of Ok, as in eq. (2.179).

My variation on the classical balls in urns analogy:

« Consider an urn containing a pounds of very tiny,
colored sand (the space of possible colors is ©)
« Take out one grain of sand, record its color as 6,

« Put that grain back, add 1 extra pound of that color sand
 Repeat this process...



Chinese Restaurant Process
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Some Informal Intuition

(1, ..., TK) ~ Dn(%%)
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What does this get wrong? Indicators versus partitions...



DP Mixture Models




Samples from DP Mixture Priors
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Samples from DP Mixture Priors
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Samples from DP Mixture Priors




Views of the Dirichlet Process

» Implicit stochastic process: Finite Dirichlet marginals

» Explicit stochastic process: Normalized gamma process

« Explicit discrete measure: Stick-breaking construction

« Marginalized predictions: Polya urn, or (almost)
equivalently the Chinese restaurant process

Later in this course:

 Modeling: Generalize one of these representations, to get
a fancier (but usually less tractable) process

* Inference: Deal with infinite-dimensional processes by
analytic integration, or finite truncation (static or dynamic)



Finite Bayesian Mixture Models




Fitting Finite Gaussian Mixtures
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Posterior Assignment Probabilities
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EM Algorithm
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EM Algorithm
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Singularities: ML for Gaussian Mixtures
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We are hoping EM will find a good local optimum...

C. Bishop, Pattern Recognition & Machine Learning



Finite Bayesian Mixture MCMC

Most basic approach: Sample z, &, 0



Standard Finite Mixture Sampler

: : : _ t—1 : : :
Given mixture weights 7~ and cluster parameters {6?,(c )}le from the previous iteration,
sample a new set of mixture parameters as follows:

1. Independently assign each of the N data points x; to one of the K clusters by sampling
the indicator Variables z = {z;} | from the following multinomial distributions:

K
2~ Z w8V (@i | 097D 6(zi, k) Z; =Y w0
k=1
2. Sample new mixture weights according to the following Dirichlet distribution:
N
) ~ Dir(N; + a/K, ..., Ng + a/K) Ne =Y (=" k)

3. For each of the K clusters, independently sample new parameters from the conditional
distribution implied by those observations currently assigned to that cluster:

t t
0 ~ p(Ok | {x; | 2V =k}, N)
When A defines a conjugate prior, this posterior distribution is given by Prop. 2.1.4.




Standard Sampler: 2 lterations

log p(x | T, 8) = -539.17 log p(x | T, 8) = —497.77



Standard Sampler: 10 lterations

log p(x | 7, 8) = —404.18 log p(x | 7, 8) = —454.15



Standard Sampler: 50 lterations

log p(x | 7, 8) = —397.40 log p(x | 7, 8) = —442.89



Collapsed Finite Bayesian Mixture

« Conjugate priors allow analytic integration of some parameters
* Resulting sampler operates on reduced space of cluster
assignments (implicitly considers all possible cluster shapes)



Collapsed Finite Mixture Sampler

Given previous cluster assignments z(t~1) sequentially sample new assignments as follows:
1. Sample a random permutation 7(-) of the integers {1,..., N}.
2. Set z = 2t~V For each i € {7(1),...,7(N)}, sequentially resample z; as follows:
(a) For each of the K clusters, determine the predictive likelihood
frlws) = p(xi [{z; | 25 =k, 7 # 1}, A)
This likelihood can be computed from cached sufficient statistics via Prop. 2.1.4.

(b) Sample a new cluster assignment z; from the following multinomial distribution:

K K
i ~ Zi > (NT'+ o/ K) fr(xi)d(zi, k) Zi =Y (N;* + o/K) fi(z;)
Y k=1 k=1

N, * is the number of other observations assigned to cluster k (see eq. (2.162)).

(¢) Update cached sufficient statistics to reflect the assignment of x; to cluster z;.

3. Set z(®) = z. Optionally, mixture parameters may be sampled via steps 2-3 of Alg. 2.1.




Standard versus Collapsed Samplers
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DP Mixture Models




Collapsed DP Mixture Sampler

Given the previous concentration parameter o~ cluster assignments z(t~1)  and cached
statistics for the K current clusters, sequentially sample new assignments as follows:

1. Sample a random permutation 7(-) of the integers {1,..., N}.

2. Set a = a®Y and z = 2=, For each i € {7(1),...,7(N)}, resample z; as follows:

(a) For each of the K existing clusters, determine the predictive likelihood

filws) = plai [ {zj | zj =k, 5 # 1}, )
This likelihood can be computed from cached sufficient statistics via Prop. 2.1.4.
Also determine the likelihood fz(z;) of a potential new cluster k via eq. (2.189).

(b) Sample a new cluster assignment z; from the following (K + 1)-dim. multinomial:
K K
1 _ » y
w~ (afz‘c(:l?z')(ﬂzi, k) + ;Nk fe(2i)0 (2, k)) Z; = afz(z;) + ’;Nk fulzi)

N, * is the number of other observations currently assigned to cluster k.
(c) Update cached sufficient statistics to reflect the assignment of z; to cluster z;. If
z; = k, create a new cluster and increment K.
3. Set z(® = 2. Optionally, mixture parameters for the K currently instantiated clusters
may be sampled as in step 3 of Alg. 2.1.
4. If any current clusters are empty (Ni = 0), remove them and decrement K accordingly.

5. If a ~ Gamma(a, b), sample a® ~ p(a | K, N, a,b) via auxiliary variable methods [76].




Collapsed DP Sampler: 2 lterations

log p(x | W, 8) = —462.25 log p(x | T, 8) = —399.82



Standard Sampler: 10 lterations

log p(x | 7, 6) = —398.32

log p(x | 7, 6) = —399.08




Standard Sampler: 50 lterations

log p(x | &, 8) = —397.67 log p(x | T, 8) = —396.71



log p(x | , ©)

DP versus Finite Mixture Samplers

— Dirichlet Process Mixture
— Finite Mixture
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DP Posterior Number of Clusters
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DP Mixture Models
plz|m601,00,...)= ZWAf(I | O)

Neal’s Alg. 1: Sample 0;

Neal’s Alg. 2: Sample z and 0y

Neal's Alg. 3: Sample z (preceding slides)
Neal's Alg. 4+: If can’t integrate 6y




