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Finite Dirichlet Distributions 

•! Beta distribution is special case where K=2: 



Dirichlet Distributions 
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Dirichlet Processes 

For any finite partition 

the distribution of the measure of those cells is Dirichlet: 



The Stick-Breaking Construction: 
DP Realizations are Discrete 



Dirichlet Process Mixtures 

Dirichlet processes define a prior distribution 
on weights assigned to mixture components: 

0 1 

concentration 
parameter 

Stick-Breaking Construction: Sethuraman, 1994 



Dirichlet Stick-Breaking 



Why the Dirichlet Process? 

•! Model complexity grows as data observed: 
!!Small training sets give simple, robust predictions 
!!Reduced sensitivity to prior assumptions 

Nonparametric No Parameters 

•! Literature showing attractive asymptotic properties  
•! Leads to simple, effective computational methods 

!!Avoids challenging model selection issues 

Flexible but Tractable 

Ferguson 1973; Sethuraman 1994 



DPs and Polya Urns 

My variation on the classical balls in urns analogy: 
•! Consider an urn containing ! pounds of very tiny, 

colored sand (the space of possible colors is ") 
•! Take out one grain of sand, record its color as  
•! Put that grain back, add 1 extra pound of that color sand 
•! Repeat this process! 

θ̄1



Chinese Restaurant Process 



Some Informal Intuition 

What does this get wrong?  Indicators versus partitions! 



DP Mixture Models 



Samples from DP Mixture Priors 



Samples from DP Mixture Priors 



Samples from DP Mixture Priors 



Views of the Dirichlet Process 

•! Implicit stochastic process:  Finite Dirichlet marginals 
•! Explicit stochastic process:  Normalized gamma process 
•! Explicit discrete measure:  Stick-breaking construction 
•! Marginalized predictions:  Polya urn, or (almost) 

equivalently the Chinese restaurant process 

•! Modeling:  Generalize one of these representations, to get 
a fancier (but usually less tractable) process 

•! Inference:  Deal with infinite-dimensional processes by 
analytic integration, or finite truncation (static or dynamic) 

Later in this course: 



Finite Bayesian Mixture Models 



Fitting Finite Gaussian Mixtures 

C. Bishop, Pattern Recognition & Machine Learning 
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Points to be Clustered 



Posterior Assignment Probabilities 

C. Bishop, Pattern Recognition & Machine Learning 
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EM Algorithm 

C. Bishop, Pattern Recognition & Machine Learning 
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EM Algorithm 
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EM Algorithm 
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EM Algorithm 
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EM Algorithm 
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EM Algorithm 
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Singularities: ML for Gaussian Mixtures 

C. Bishop, Pattern Recognition & Machine Learning 

x

p(x)

We are hoping EM will find a good local optimum! 



Finite Bayesian Mixture MCMC 

Most basic approach:  Sample z, #, $%



Standard Finite Mixture Sampler 



Standard Sampler: 2 Iterations 



Standard Sampler: 10 Iterations 



Standard Sampler: 50 Iterations 



Collapsed Finite Bayesian Mixture 

•! Conjugate priors allow analytic integration of some parameters 
•! Resulting sampler operates on reduced space of cluster 

assignments (implicitly considers all possible cluster shapes) 



Collapsed Finite Mixture Sampler 



Standard versus Collapsed Samplers 



DP Mixture Models 



Collapsed DP Mixture Sampler 



Collapsed DP Sampler: 2 Iterations 



Standard Sampler: 10 Iterations 



Standard Sampler: 50 Iterations 



DP versus Finite Mixture Samplers 



DP Posterior Number of Clusters 



DP Mixture Models 

•! Neal’s Alg. 1:  Sample 
•! Neal’s Alg. 2:  Sample z and 
•! Neal’s Alg. 3:  Sample z (preceding slides) 
•! Neal’s Alg. 4+:  If can’t integrate  

θ̄i
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