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Overview

e General class of stick-breaking priors
e Truncation result

e Polya urn Gibbs sampler

e Blocked Gibbs sampler

e Comparison



Stick-Breaking Priors

e Discrete random probability measures

N

P() =) _pidz ("), 0=<p,<1and Y ;_,p, =1 almost surely

k=1
e Random measure P, (a,b) is stick-breaking random
measure
po=V, and p,=(1-V)(1-V,)

(U= N, BB

oV, ~Beta(a,,b, ), independent

e N finite or infinite



The Case N < Infinity

p, =V, aid p ={1—¥YH1L=V,])
=¥ i1 ¥n &B=2, 0 N

e N-1 degrees of freedom

Setting V,, = 1 guarantees that Zf:] p, = | with probability 1,
because

N—I1
1 =Y " pe=(1=W)(1=Vy)i (4)
k=1



The Case N = Infinity

pi=V, and p,=(1—V)(1—=V,):-
[I_Vk_[]ﬁ., AEEII

e Necessary and sufficient conditions

Lemma I. For the random weights in the 7_(a, b) random
measure,

ZM— =1 as.iff Y E(log(1—V,))=—%. (5
k=1 k=1

Alternatively, it is sufficient to check that Y, log(1+
i fh, ) =400,

e Computation?



The Pitman-Yor Process PY(a,b)

e Special case of stick-breaking prior P (a,b)

oak=1-a O<=ac<1

obk=b+ka b>-a
Notable Pitman-Yor processes:
e Dirichlet process a =0, b = alpha

e 'Stable law' process a = alpha, b =0



Generalized Polya Urn Characterization

For a P-Y process PY(a,b)

b+ am.
P{YEE'H;I ==== 1}_ f—lH(.]

nt.—a

+Zb+f_]ﬂr.“.(.} f=2,3,...J1,

{ineronl, iidH

{;  with probability
(b+ am,)/(b+ i—1),
Y. with probability
(n},—a)/(b+i—1),

or F—2 3y



Finite Dimensional Dirichlet bp,(alpha*H)

e Like a Pitman-Yor process with

o a = -alpha/N
ob=alpha>0
oN >=n

N T

‘ C"Lﬁ.-' & . iid o

P()=)_ S G 07,(*), Gy ™ Gﬂ“"ﬂﬂﬂ(ﬁ)-
k,N

k=1 £ok=]

e P, (a,b) measure, but not actually P-Y as (a <0)

DP, (aH)(g) — DP(aH)(g)



Truncation of P_(a,b) Measures

e Truncations P (a,b) are computationally tractable

e Produce virtually indistinguishable measures

T'heorem 2. Let p, denote the random weights from a
given P (a,b) measure. If ||+ ||, denotes the £, distance, then

ey — el £4(1 —E[(Z f)])

e Ex. Dirichlet Process

Iy — molly ~ dnexp(—(N —1)/a)



Proof of Theorem 2

Proof sketch on board if time & interest.



Summary

e Stick-breaking prior
e Pitman-Yor

e [runcation



Two Gibbs Samplers

Polya Urn Gibbs Sampler
- extension to models from Escobar, West,
MacEachern,  Ferguson.
- integrates out P in the hierarchical model
- must have a known prediction rule (Y [Y_)

- P can be infinite

Blocked Gibbs Sampler
- works when prediction rule is unknown
- directly involve the prior in the sampler

- P needs to be finite (but we can apply truncation for infinite
P)



Polya Urn Gibbs Samplers

hierarchical model with stick-breaking priors:

ind

(XY, 0) ~ w(X;|Y,, 0), £
(Y|P) ~ P,
g ~ (@),
P~ (11)

iIntegrate out P :

(XY, 0~ 7(X,)Y.8), i=1,....,n,
Vi BN e R e T

A~ 1m(f), (12)



Polya Urn Gibbs Samplers (PG)

- Assume priors = PY¥(a,b) or DP, (alpha*H)
- Know the prediction rule (Y |Y_)
- Want the posterior [I(Y,theta|X)

- Iterate between the two steps:
(a) (Y/|Y_,theta,X):

assigned clusters

i :

=P, €16, X} + 347 0y: (),

@ J=1

unseen clusters

Py, e.|Y_.6,X)
gy x (b+ (.mz)ff{XJY._ O)H(dY),
q

q; o« (n}—a) f(X;|Y], 6)

(b) (theta]Y,X):

F(B]Y.X) o m(d6) [[F(X,|Y,.6)
i=1



Polya Urn Gibbs Samplers (PG )

- Problem: Y* (unique Y's) get stuck if qo* IS large

- Acceleration step: resample Y*
- Let C=(C,,...,C ), indexing into Y* as a look-up table

(C) (Yj*|C,theta,X)
fYFC,0,X)xH(dYY [ f(XlY}.6).
f2 =1
Limitations of PG and PG_
1. slow mixing: a single Y. at a time

2. relies on conjugacy for q,*

3. prior P is not directly involved, only depend on Y
4. requires a known urn scheme / prediction rule



Blocked Gibbs Sampler

- need finite prior P (a,b) (use trucations as in section 3.2)
- update blocks of parameters (draw from multivariate distr)

(X,|Z, K. 0) ~ 7(X,|Z,.0), i=1.....n,

o .'""l'l-
iid

(K;lp) ~ ZP& 0, (+)

k=1

(p.Z) ~ w(p) x HY(Z).
6 ~ m(6),

where K = (K,....K,). Z = (Z,,....Zy), p =
(Preveospy) >~ 5D(ab), and Z, arc ud H.



Blocked Gibbs Sampler

direct posterior inference:

iterate equilibrium
distribution

(Z|K, 6, X),

(K|Z, p. 0, X)

(p|K). (Z.K.p. 0|X)

(6|Z, K, X).

each draw gives
a random measure



Blocked Gibbs Sampler

(a) Conditional for Z: Simulate Z, ~ H for each k ¢ (c) Conditional for p: By the conjugacy of the generalized

K—{K},....K*}. Also, draw (Zx-|K, 6, X)) from the Dirichlet distribution to multinomial sampling, it fol-
density ’ lows that our draw is
F(Ze K 0.X) o« H(dZy) [T F(X,|Zg. 0). p=Ve and p=(1=V) (1= V) 1=V )V,

J J J

{i3Ki:K;} =D e N S0

j=1,...,m. (18) where

(b) Conditional for K: Draw values .
V:‘%jBeta(ak-f- Myb+ Ml,),

N
(K|Z,p, 0,X) ~ Y p, 8,(),  i=1,....n, I~k 1
=1 fork=1....,.N¥—1,
where
(d) Conditional for 6: As before, draw 6 from the density
(pl,i" .- ’pN,i) O<(P1f(Xi|Z1’9)’- . ’pr(Xi|ZN’0))- (remembering that Y, = ZKJ)
(a) ~ acceleration step (c) £ (612, K. X) o< m(d6) [T £ (X,1%,.6).

(d) = (b) in PG and PG,



Evaluation

-{DP, DP_,, PY} x {PG, PG_, BG}
- experimental results (batch means, std, etc)

- PG is bad
- PG, works well when prediction rule is known

- BG is more flexible

- complexity? linear in n (PG) vs multivariate draws (BG)
- easy to get stuck?
- which sampler for which prior?



Discussions

- PG : PG, is the same as Algorithm 1 : 2 in [Neal 1999]

- what's semiparametric?
- what's "almost sure"?
- what's the graphical model like for (16) in Section 57

- in the non-conjugate case, are we doing Metropolis-Hastings
inside the Gibbs sampler? (Section 5.4)

- with known prediction rule, is BG preferred”? How?

- sampling in equivalence class space vs label space?



