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Main Idea

* Problem: Recently introduced Gibbs samplers
for infinite mixtures do not mix well over
cluster labels.

* Solution: Introduction of particular mixing
moves to Gibbs samplers.




X = observed data

Z = assighment variables Z =1zy,zo,. ..

V = stick variables
1t = cluster weights

Notation
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Stick Breaking Construction

Changing these

V; ~ Beta(a;, b;) S parameters allows

m;

us to realize
i—1 different types of
{V} = V; H(l _ V}) processes

g=1



Stick Breaking Construction
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j=1 —— Dirichlet Process
Vi ~ Beta(l, a)
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. , - Pitman-Yor Process
Vi ~ Beta(l —a,b+1i %X a)
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Stick Breaking Construction

mn=m(V)=V;,[[(1-V)

Vi ~ Beta(l, a)

mn=m(V)=V;,[[(1-V)

7=1

Exponential distribution
of cluster sizes

Vi ~ B{i—*fﬁ.(l —a,b+1iXx “)

ael0,1).b>—a

If you set :
a=F.b=0

Then, there is a power law
distribution of cluster
sizes.




Stick Breaking Construction

i—1
m=m (V) =V, (l—lj) )
j=1
Vi ~ Beta(a;, b;) - Another formulation
ad; = i
_ Posterior Expected
R— A Cluster Weights
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Ishwaran & James 2003



Stick Breaking Construction

WARNING!

Stick breaking representation operates over
the space of explicit cluster assignments, not
equivalence classes.




Mixing over Cluster Labels

e Claim: Clusters with lower indexes have high
prior probability than clusters with higher
indexes (due to stick breaking). This may
results in slow mixing over cluster labels.

* Solution: Explicit mixing over cluster labels
needs to occur.




Intuition Behind Slow Mixing
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Intuition Behind Slow Mixing

Repeat until....



Intuition Behind Slow Mixing
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This may take a long time to happen.



Monte Carlo Model

The Setup:

N
H Nxn;pe, ,¥.,] €—— Gaussian Clusters

P(Z\V) = H 7. (V) <€—— Stick Breaking Construction

P(V) = HH{UE - a;,b;) €— Stick Le.nthS are
' Beta Distributed

_ Hf’\"f}'v[ﬂf- » € Normal-Wishart
: prior for cluster
means and inverse

covariances



Monte Carlo Model

The Original Method:

1. Iterate through all data points x,
A. Draw u uniformly at random from [0,1]
B. Find the first cluster index i* such that:

2221 P(':” — ';|Z(—TEJ-JY) B

C. Setz =i
2. Repeat.




Metropolis Hastings Algorithm

Propose a move from state x to state x’ using a proposal
distribution: ( ,r‘ }I)
gl

Decide whether or not to accept this move with
acceptance probability:

m(z)g(z|z’)
m(z)q(z'|z)

r=min(l, o) =



Additional Moves

1. Label-Swap:

a) Choose 2 clusters with prior probability : i =

b) Propose swap using Metropolis-Hastings
accept/reject rule
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Additional Moves

2. Label-Permute:
a) Sample some index i from the prior: Pi = i/

b) Randomly permute all the cluster labels with an
index <= i

Probability of accept is similar to label-swap, but
considers larger range of clusters permuted when
creating the Metropolis-Hastings accept rule




Monte Carlo Model

The Updated Method:

1. Iterate through all data points x,
A. Draw u uniformly at random from [0,1]
B. Find the first cluster index i* such that:

Zi*:l P(':” — £|Z(—TE:J“11F} B
C. Setz =i

D. With probability M. make mixing move i.
2. Repeat until convergence.
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Swap Moves

Why just these two moves?
Why do these moves work?

We saw an example where there were 2
clusters best explained the data — how well
does the method work when a larger number
of clusters are necessary?

How do these moves work on different sized
clusters?



Motivation Behind the Dependent
Dirichlet Process

Table 1: Girls, weight for age. Age is in months,
LSD, USD and RSD are the “lower standard devia-

tion”, “upper standard deviation”, and ratio of the

USD to LSD. All weights are in kilograms.

Age LSD Mean USD RSD
0 0.5 3.2 0.4 080

1 0.6 4.0 0.5 0.83
20 1.2 11.2 1.2 1.00
40 1.6 14.8 2.1 1.31
60 1.9 17.7 2.8 147
100 3.8 26.0 5.8  1.53

S
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Changes from a
left skewed
distribution to
a right skewed
distribution

*We'd like a model that is allowed to change over time, where
the conditional distribution of weight, at similar ages is similar.

MacEachern 2000




Dependent Dirichlet Process

* Take a finite number of the previously
described model, indexed by t (time).

* Couple the models at the level of the cluster
parameters 6

— Can impose “smoothness” over time between
* Cluster means

e Cluster covariances
e Cluster size



The Model

Family of T joint distributions where:
P(X.Z,V,0) = P(Q]HP(Xi Z1,01)P(Z|V)P(Vy)
t
Individual terms are from the previous model, and P(8)

is coupled via a joint prior distribution.

Alternate between updating class assignments and
updating cluster parameters for the different time steps by
sampling from the following conditional distributions:

P(EHL "XFEEZ_TJ.,[_FHE_} P{9f|9—i"‘x‘-i‘zij



Additional Moves

Label-Swap:

1. Swap labelsiand j for all time slices in an interval
[t,, t,] where these boundaries are picked using:
a. t,=t,
b. Uniformly at randomin [1, T] where T is last time slice
c. t;=landt,=T
2. Propose swap using Metropolis-Hastings
accept/reject rule
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Figure 2: Log joint probability for the DDP sampler with extra
nuxing moves (solid) and without extra nuxing moves (dashed).
Curve averaged over 5 runs. The DDP with mixing moves ends
up in a region of higher probability.
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Figure 3: Cluster assignment with highest joint probability for
DDP sampler without mixing moves. Points with different mark-
ers have different cluster labels. Clusters are not in correspon-
dence.



* 0
X
9 +F + ++
& :I-—i: +

w
w
=
=
-
b
o
t |ll'.'l
-
S
=
w5

-

it

PR,
| -

Figure 4: Same as in figure 3 but for DDP sampler with mix-
mg moves. Almost all clusters have been brought mnto correspon-
dence.



Histogram of Association Variance
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Figure 5: Histogram of the variance of association matrices com-
puted across different sampling runs. The smaller variance of the
DDP with nuxing moves indicates that it consistently finds a good
clustering and does not get stuck in local modes.



DDP Swapping Moves

* Why was the label-permute move not
effective for the doppler data?

* How do the different time swap choices affect
the results?



