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Main Idea 

• Problem: Recently introduced Gibbs samplers 
for infinite mixtures do not mix well over 
cluster labels. 

 

• Solution: Introduction of particular mixing 
moves to Gibbs samplers. 



Notation 

• X = observed data  

• Z = assignment variables 

• V = stick variables 

• π = cluster weights 



Stick Breaking Construction 
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Changing these 
parameters allows 

us to realize 
different types of  

processes 



Stick Breaking Construction 

Dirichlet Process 

Pitman-Yor Process 



Stick Breaking Construction 

Exponential distribution 
of cluster sizes 

If you set : 
 
 

Then, there is a power law 
distribution of cluster 

sizes. 
 



Stick Breaking Construction 

Another formulation 

Ishwaran & James 2003 

Posterior Expected 
Cluster Weights 



Stick Breaking Construction 

WARNING!   

   Stick breaking representation operates over 
the space of explicit cluster assignments, not 
equivalence classes. 



Mixing over Cluster Labels 

• Claim: Clusters with lower indexes have high 
prior probability than clusters with higher 
indexes (due to stick breaking).  This may 
results in slow mixing over cluster labels. 

 

• Solution: Explicit mixing over cluster labels 
needs to occur. 



Intuition Behind Slow Mixing 
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Intuition Behind Slow Mixing 



Intuition Behind Slow Mixing 

Repeat until…. 



Intuition Behind Slow Mixing 

This may take a long time to happen. 



Monte Carlo Model 

The Setup: 

Gaussian Clusters 

Stick Breaking Construction 

Stick Lengths are 
Beta Distributed 

Normal-Wishart 
prior for cluster 

means and inverse 
covariances 



Monte Carlo Model 

The Original Method: 
 
1. Iterate through all data points xn 

A.  Draw u uniformly at random from [0,1] 
B. Find the first cluster index i* such that: 
 
 
C. Set zn=i* 

2. Repeat. 



Metropolis Hastings Algorithm 

1. Propose a move from state x to state x’ using a proposal 
distribution: 
 
 

2. Decide whether or not to accept this move with 
acceptance probability: 



Additional Moves 

1. Label-Swap:   

a) Choose 2 clusters with prior probability :  

b) Propose swap using Metropolis-Hastings 
accept/reject rule 



Additional Moves 

2.  Label-Permute:   

a) Sample some index i from the prior:  

b) Randomly permute all the cluster labels with an 
index <= i 

 

Probability of accept is similar to label-swap, but 
considers  larger range of clusters permuted when 
creating the Metropolis-Hastings accept rule 



Monte Carlo Model 

The Updated Method: 
 
1. Iterate through all data points xn 

A.  Draw u uniformly at random from [0,1] 
B. Find the first cluster index i* such that: 
 
 
C. Set zn=i* 

D. With probability Mi make mixing move i. 
2. Repeat until convergence. 





Swap Moves 

• Why just these two moves?    

• Why do these moves work? 

• We saw an example where there were 2 
clusters best explained the data – how well 
does the method work when a larger number 
of clusters are necessary? 

• How do these moves work on different sized 
clusters? 



Motivation Behind the Dependent 
Dirichlet Process 

Changes from a 
left skewed 

distribution to 
a right skewed 

distribution 

*We’d like a model that is allowed to change over time, where  
the conditional distribution of weight, at similar ages is similar. 

MacEachern 2000 



Dependent Dirichlet Process 

• Take a finite number of the previously 
described model, indexed by t (time). 

• Couple the models at the level of the cluster 
parameters θ  

– Can impose “smoothness” over time between  

• Cluster means 

• Cluster covariances 

• Cluster size 



The Model 
Family of T joint distributions where: 
 
 
Individual terms are from the previous model, and        .   
is coupled via a joint prior distribution.  
 
Alternate between updating class assignments and 
updating cluster parameters for the different time steps by 
sampling from the following conditional distributions: 
 
 



Additional Moves 

Label-Swap:   

1. Swap labels i and j for all time slices in an interval 
[t1, t2] where these boundaries are picked using: 

a. t1 = t2 

b. Uniformly at random in [1, T] where T is last time slice 

c. t1=1 and t2=T 

2. Propose swap using Metropolis-Hastings 
accept/reject rule 











DDP Swapping Moves 

• Why was the label-permute move not 
effective for the doppler data? 

• How do the different time swap choices affect 
the results? 

 

 


