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DP Mixture Models 



DPs and Polya Urns 

My variation on the classical balls in urns analogy: 
•! Consider an urn containing ! pounds of very tiny, 

colored sand (the space of possible colors is ") 
•! Take out one grain of sand, record its color as  
•! Put that grain back, add 1 extra pound of that color sand 
•! Repeat this process! 

θ̄1



DP Mixture:  Polya Urn Sampler 
•! Marginalize G to produce 

Polya urn predictive rule 
•! Escobar & West (1995) 
•! Algorithm 1 of Neal (2000) 
•! Basic Polya urn sampler of 

Ishwaran & James (2001) 
•! Slow:  Can only change 

cluster centers by 
destroying and recreating 
that cluster 



Chinese Restaurant Process 



DP Mixture:  CRP Sampler 
•! Conceptually separates cluster 

allocations and parameters 
•! Marginalize cluster sizes to give 

Chinese restaurant process 
prior on data partitions 

•! Accelerated Polya urn sampler 
of Ishwaran & James (2001) 

•! Algorithm 2 of Neal (2000) 

•! Algorithm 3 of Neal (2000) also 
marginalizes (collapses) cluster 
parameters (needs conjugacy) 

•! Rasmussen (2001) elaborates 
•! Effective for limited range of 

models it applies to! 



Collapsed DP Sampler: 2 Iterations 



Collapsed DP Sampler: 10 Iterations 



Collapsed DP Sampler: 50 Iterations 



DP Posterior Number of Clusters 

These results also place a prior distribution on the DP 
concentration parameter     , and resample it as part of 

the MCMC inference (Escobar & West, 1995) 
α



DP Stick-Breaking Construction 
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concentration 
parameter 

Stick-Breaking Construction: Sethuraman, 1994 



DP Mixture:  Stick-Breaking Sampler 
•! Explicitly instantiate and 

resample cluster sizes  
(stick-breaking prior) 

•! Without marginalization 
there are infinitely many 
cluster size parameters 

•! Blocked Gibbs sampler of 
Ishwaran & James (2001) 
uses analytic bounds to 
build a finite truncation 

•! Main benefit:  Flexibility 

……  



Dirichlet Processes 

For any finite partition 

the distribution of the measure of those cells is Dirichlet: 



Properties of the Dirichlet Process 
is some measurable space (the sigma-algebra      is a collection 
of sets, and defines the events to be assigned probabilities) 
is the collection of all probability measures P on 

is the posterior distribution of a random probability measure P, 
with prior distribution     , given observed data X ~ P!

The approach of Sethuraman (1994, 1980): 
1.! Explicitly construct a process which trivially satisfies P1-P2 
2.! Show that this process has Dirichlet marginals, and thus 

is in fact the Dirichlet process 
3.! Use this construction to establish P3 



The Stick-Breaking Construction: 
Trivially A Discrete Probability Measure 
In my notation from earlier this lecture, and past lectures: 



From Stick-Breaking to Dirichlet: Setup 
In Sethuraman’s notation: 

are i.i.d. with distribution 

are i.i.d. with distribution 

A key consequence of the stick-breaking recursion: 

where 

Equality in distribution: 



From Stick-Breaking to Dirichlet: Step 1 

Stick-breaking measure: 

Evaluating on finite partition: 

The plan: 



Finite Dirichlet Distributions 

•! Beta distribution is special case where K=2: 



From Stick-Breaking to Dirichlet: Step 2 
Evaluating on finite partition: 

•! Assume that P has distribution 
 

•! Suppose first that                     , we are interested in 
 
 
where samples from           equal          with probability one 
 

•! This has distribution  

Intuition 
via 

Moments 



From Stick-Breaking to Dirichlet: Step 3 
Evaluating on finite partition: 

•! Assume that P has distribution 
 

•! Given that                      , the right-hand-side has distribution 
 
 

•! Averaging over        with weights                                        gives 



From Stick-Breaking to Dirichlet: Step 4 
Evaluating on finite partition: 

•! We have shown that 
is a solution of this recurrence  

•! In fact, it is the unique solution (proof by contradiction) 
•! Intuition for Lemma 3.2:  Prior distribution can always be 

written as a weighted combination of posteriors 



DP Posteriors and Conjugacy 

Proof Hint:  For any finite partition, we have 

An observation must be of one of the countably infinite 
atoms which compose the random Dirichlet measure 



DPs are Neutral: “Almost” independent 
The distribution of a random probability measure G  
is neutral with respect to a finite partition                       iff 


