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DP Mixture Models




DPs and Polya Urns

Theorem 2.5.4. Let G ~ DP(«a, H) be distributed according to a Dirichlet process,
where the base measure H has corresponding density h(6). Consider a set of N obser-

vations 0; ~ G taking K distinct values {Hk}szl. The predictive distribution of the next
observation then equals

1

K
p(ONs1=0101,...,08,0, H) = — N (ah(e) + ZA‘kd(e,ek)> (2.180)
' k=1

where Ny is the number of previous observations of Ok, as in eq. (2.179).

My variation on the classical balls in urns analogy:

« Consider an urn containing a pounds of very tiny,
colored sand (the space of possible colors is ©)
« Take out one grain of sand, record its color as 6;

« Put that grain back, add 1 extra pound of that color sand
 Repeat this process...



DP Mixture: Polya Urn Sampler
Marginalize G ’Fo .produce /\

Polya urn predictive rule
Escobar & West (1995)

Algorithm 1 of Neal (2000) a b I I ‘
Basic Polya urn sampler of

Ishwaran & James (2001) @ 6 ('9,

Slow: Can only change
cluster centers by

destroying and recreating e
that cluster
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Chinese Restaurant Process
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DP Mixture: CRP Sampler

Conceptually separates cluster
allocations and parameters
Marginalize cluster sizes to give
Chinese restaurant process
prior on data partitions
Accelerated Polya urn sampler
of Ishwaran & James (2001)
Algorithm 2 of Neal (2000)

Algorithm 3 of Neal (2000) also
marginalizes (collapses) cluster
parameters (needs conjugacy) ™ ~ GEM(a)

Rasmussen (2001) elaborates O ~H(\) k=1,2,...
Effective for limited range of .
models it applies to... i ~ F(65,)

N?T



Collapsed DP Sampler: 2 lterations

log p(x | , 8) = —462.25 log p(x | T, 8) = —399.82



Collapsed DP Sampler: 10 lterations

log p(x | 7, 6) = —398.32

log p(x | 7, 6) = —399.08




Collapsed DP Sampler: 50 lterations

log p(x | 7, 6) = —~397.67 log p(x | 7, ) = —396.71



DP Mixture Size

DP Posterior Number of Clusters
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These results also place a prior distribution on the DP
concentration parameter «, and resample it as part of

the MCMC inference (Escobar & West, 1995)
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DP Stick-Breaking Construction
p@) = 3 mf (@] 6)

A\ J
Y \§ ~ J
™1 <
T
2 WsH,—’ .......
k—1 T4
T = Pk H (1 —Be) o concentration
(=1 parameter

B ~ Beta(l, a)

Stick-Breaking Construction: Sethuraman, 1994



DP Mixture: Stick-Breaking Sampler

« Explicitly instantiate and
resample cluster sizes
(stick-breaking prior)

« Without marginalization
there are infinitely many
cluster size parameters

« Blocked Gibbs sampler of
Ishwaran & James (2001)
uses analytic bounds to
build a finite truncation

« Main benefit: Flexibility

7 ~ GEM(a)
O ~ H(N)  k=1,2,...
| [ M o Fl02




Dirichlet Processes

E[G(T)] = H(T) G ~ DP(a, H)

For any finite partition
K
JTk=0 TuNTy=0  k#/¢
k=1

the distribution of the measure of those cells is Dirichlet:

(G(Tl), e ooy G(TK)) ~ Dir(aH(Tl), .« ooy OzH(TK))



Properties of the Dirichlet Process

(X,B) is some measurable space (the sigma-algebra B is a collection
of sets, and defines the events to be assigned probabilities)

P s the collection of all probability measures P on (X, BB)

pX  is the posterior distribution of a random probability measure P,

with prior distribution v/, given observed data X ~ P

P1 D, is a probability measure on (P,C),

P2 D, gives probability one to the subset of all discrete probability measures on
(X, B), and

P3 the posterior distribution DX is the Dirichlet measure D, s, where §x is the
probability measure degenerate at X.

The approach of Sethuraman (1994, 1980):
1. Explicitly construct a process which trivially satisfies P1-P2
2. Show that this process has Dirichlet marginals, and thus
Is in fact the Dirichlet process
3. Use this construction to establish P3



The Stick-Breaking Construction:
Trivially A Discrete Probability Measure

In my notation from earlier this lecture, and past lectures:

Theorem 2.5.3. Let m = {mx}z—; be an infinite sequence of mizture weights derived
from the following stick—breaking process, with parameter o > 0:

Br ~ Beta(l, «) k=12 ... (2.174)
k—1 k—1

T — Bk H(l — Bg) — Bk, (1 — Z ’/Tg) (2175)
(=1 (=1

Gwen a base measure H on ©, consider the following discrete random measure:
oo
G(0) = md(0,0) O ~ H (2.176)
k=1

This construction guarantees that G ~ DP(a, H). Conwversely, samples from a Dirichlet
process are discrete with probability one, and have a representation as in eq. (2.176).



From Stick-Breaking to Dirichlet: Setup

In Sethuraman’s notation:
P(6,Y;B) }: prby, (B

Pn = 9 ngmgn 1(1 )
(01,65,...) areiid. with distribution B(1, (X))
(Y1,Y,,...)  areiid. with distribution B(B) = a(B)/a(X)

A key consequence of the stick-breaking recursion:

P(6,Y;B) = 6,6y,(B) + (1 - 6,)P(6",Y"; B)

where 6;; = 6n+1 Y,: — In41

Equality in distribution: P = 616y, + (1 — 6;)P



From Stick-Breaking to Dirichlet: Step 1

Theorem 3.4. Let {B,, B,,..., B} be a measurable partition of X and let P =
(P(B1), P(B3),...,P(By)). Then the distribution of P is the k-dimensional
Dirichlet measure D(Q(Bl),a(Bz) ..... a(Bi))-

Stick-breaking measure: PE 616y, + (1 —6,)P

Evaluating on finite partition: P f—-"t 91D —+ (1 — 91)P
I takes the value e; with probability 8(B;)

The plan:

We first verify that the k-dimensional Dirichlet measure for P satisfies the
distributional equation (3.4) and then show that this solution is the unique so-
lution.



Finite Dirichlet Distributions

K
L F(Zk Qk) ,/Tak—l

p(m | a) = ag > 0
[1x (o) P .
o K
_ Zk A
Eq|mk] = - ap = Zak
k=1
K —1 84y
Var, |m.| = oL — —
« Beta distribution is special case where K=2:
['(ao+ (3
p(m | o, B) = Cht )’/Ta_l(l—’/T)’B_l a, 3 >0

['(a) T'(5)



From Stick-Breaking to Dirichlet: Step 2
Evaluating on finite partition: P -S—-"t 91D —+ (l — 91)P
I takes the value e; with probability 8(B;)

« Assume that P has distribution D(a(B1) a(B3),...,a(By))

» Suppose first that D = ej, we are interested in
01D.. + (1 = 01)D(a(B;).a(Bs)....,a( Bx))

where samples from De,- equal ej with probability one

+ This has distribution  D((B,),a(B2),...,c(Bx ))+e;

Lemma 3.1. Let v = (v1,7, ..., Ye) and 8§ = (61,69,...,6;) be k-dimensional oy
vectors. Let U, V be independent k-dimensional random vectors with Dirichlet IntU{t/on
distributions D., and Ds, respectively. Let W be independent of (U, V) and have via

a Beta distribution B(v,0), wherey =3 v, and 6 = 3 8;. Then the distribution Moments
of WU + (1 — W)V s the Dirichlet distribution D. .



From Stick-Breaking to Dirichlet: Step 3
Evaluating on finite partition: P -S—-"t 91D —+ (l — 91)P
I takes the value e; with probability 8(B;)

« Assume that P has distribution D(a(B1) a(B3),...,a(By))

. Giventhat D = ej,the right-hand-side has distribution

D(a(B1),a(B2),....a(Bi))+e;
« Averaging over D with weights 8(B;) = a(B;)/a(X) gives
D(a(By),a(B2),....a(Bk))
Lemma 3.2. Let v = (v1,...,7), ¥ = > v; and let B; = ~;/v,7 = 1,2,...,k.

Then
Z 6jD7+ej - D‘Y'

This conclusion can also be written as E(D,yz) = D,, where Z is a random
vector that takes the values e; with probability v;/v,5 =1,...,k.



From Stick-Breaking to Dirichlet: Step 4
Evaluating on finite partition: P -S—-"t 91D —+ (l — 91)P
D takes the value e; with probability 3(B;)

* We have shown that D(Q(Bl),a(Bg),...,a(Bk))
IS a solution of this recurrence

In fact, it is the unique solution (proof by contradiction)

* Intuition for Lemma 3.2: Prior distribution can always be
written as a weighted combination of posteriors



DP Posteriors and Conjugacy

Proposition 2.5.1. Let G ~ DP(a, H) be a random measure distributed according to

a Dirichlet process. Given N independent observations 0; ~ G, the posterior measure
also follows a Dirichlet process:

N
_ _ 1 .
p(G 1 01, ... ,QN,CY,H) = DP (a + N, TN (QH + ZEZIO(Z)) (2.169)

Proof Hint: For any finite partition, we have

p((G(Th),...,G(Tk)) | 0 € Ty) = Dir(aH (T1) aH(Ty)+1,...,aH(Tk))

ooooo

An observation must be of one of the countably infinite
atoms which compose the random Dirichlet measure



DPs are Neutral: “Almost” independent

The distribution of a random probability measure G
Is neutral with respect to a finite partition (Ty,....Tk) iff

- GTe) |,
G(Tk) is independent of { = G(Ty) ’ U+ k}

given that G(Ty) < 1.

Theorem 2.5.2. Consider a distribution P on probability measures G for some space
©. Assume that P assigns positive probability to more than one measure G, and that
with probability one samples G ~ P assign positive measure to at least three distinct
points 0 € ©. The following conditions are then equivalent:

(i) P =DP(a, H) is a Dirichlet process for some base measure H on ©.
(ii) P is neutral with respect to every finite, measurable partition of ©.

(iii) For every measurable T C ©, and any N observations 0; ~ G, the posterior
distribution p(G(T) | 01, ..., HN) depends only on the number of observations that
fall within T (and not their particular locations).



