Applied Bayesian Nonparametrics

Special Topics in Machine Learning Brown University CSCI 2950-P, Fall 2011 September 29: Dirichlet Process Theory, MCMC for DP Mixture Models

DP Mixture Models

DPs and Polya Urns

Theorem 2.5.4. Let $G \sim \operatorname{DP}(\alpha, H)$ be distributed according to a Dirichlet process, where the base measure H has corresponding density $h(\theta)$. Consider a set of N observations $\bar{\theta}_{i} \sim G$ taking K distinct values $\left\{\theta_{k}\right\}_{k=1}^{K}$. The predictive distribution of the next observation then equals

$$
\begin{equation*}
p\left(\bar{\theta}_{N+1}=\theta \mid \bar{\theta}_{1}, \ldots, \bar{\theta}_{N}, \alpha, H\right)=\frac{1}{\alpha+N}\left(\alpha h(\theta)+\sum_{k=1}^{K} N_{k} \delta\left(\theta, \theta_{k}\right)\right) \tag{2.180}
\end{equation*}
$$

where N_{k} is the number of previous observations of θ_{k}, as in eq. (2.179).
My variation on the classical balls in urns analogy:

- Consider an urn containing α pounds of very tiny, colored sand (the space of possible colors is Θ)
- Take out one grain of sand, record its color as $\bar{\theta}_{1}$
- Put that grain back, add 1 extra pound of that color sand
- Repeat this process...

DP Mixture: Polya Urn Sampler

- Marginalize G to produce Polya urn predictive rule
- Escobar \& West (1995)
- Algorithm 1 of Neal (2000)
- Basic Polya urn sampler of Ishwaran \& James (2001)
- Slow: Can only change cluster centers by destroying and recreating that cluster

$$
\begin{aligned}
G(\theta)=\sum_{k=1}^{\infty} \pi_{k} \delta\left(\theta, \theta_{k}\right) \quad \pi & \sim \operatorname{GEM}(\alpha) \\
\theta_{k} & \sim H(\lambda) \quad k=1,2, \ldots \\
\bar{\theta}_{i} & \sim G \\
x_{i} & \sim F\left(\bar{\theta}_{i}\right)
\end{aligned}
$$

Chinese Restaurant Process

$$
p\left(z_{N+1}=z \mid z_{1}, \ldots, z_{N}, \alpha\right)=\frac{1}{\alpha+N}\left(\sum_{k=1}^{K} N_{k} \delta(z, k)+\alpha \delta(z, \bar{k})\right)
$$

DP Mixture: CRP Sampler

- Conceptually separates cluster allocations and parameters
- Marginalize cluster sizes to give Chinese restaurant process prior on data partitions
- Accelerated Polya urn sampler of Ishwaran \& James (2001)
- Algorithm 2 of Neal (2000)
- Algorithm 3 of Neal (2000) also marginalizes (collapses) cluster parameters (needs conjugacy)
- Rasmussen (2001) elaborates
- Effective for limited range of models it applies to...

$\pi \sim \operatorname{GEM}(\alpha)$
$\theta_{k} \sim H(\lambda) \quad k=1,2, \ldots$
$z_{i} \sim \pi$
$x_{i} \sim F\left(\theta_{z_{i}}\right)$

Collapsed DP Sampler: 2 Iterations

$\log p(x \mid \pi, \theta)=-462.25$

$\log p(x \mid \pi, \theta)=-399.82$

Collapsed DP Sampler: 10 Iterations

$\log p(x \mid \pi, \theta)=-398.32$

$\log p(x \mid \pi, \theta)=-399.08$

Collapsed DP Sampler: 50 Iterations

$\log p(x \mid \pi, \theta)=-397.67$

$\log p(x \mid \pi, \theta)=-396.71$

DP Posterior Number of Clusters

These results also place a prior distribution on the DP concentration parameter α, and resample it as part of the MCMC inference (Escobar \& West, 1995)

DP Stick-Breaking Construction
 $$
p(x)=\sum_{k=1}^{\infty} \pi_{k} f\left(x \mid \theta_{k}\right)
$$

$\beta_{k} \sim \operatorname{Beta}(1, \alpha)$

DP Mixture: Stick-Breaking Sampler

- Explicitly instantiate and resample cluster sizes (stick-breaking prior)
- Without marginalization there are infinitely many cluster size parameters
- Blocked Gibbs sampler of Ishwaran \& James (2001) uses analytic bounds to build a finite truncation
- Main benefit: Flexibility

$z_{i} \sim \pi$
$x_{i} \sim F\left(\theta_{z_{i}}\right)$

Dirichlet Processes

$\mathbb{E}[G(T)]=H(T)$

$$
G \sim \mathrm{DP}(\alpha, H)
$$

For any finite partition

$$
\bigcup_{k=1}^{K} T_{k}=\Theta \quad T_{k} \cap T_{\ell}=\emptyset \quad k \neq \ell
$$

the distribution of the measure of those cells is Dirichlet:

$$
\left(G\left(T_{1}\right), \ldots, G\left(T_{K}\right)\right) \sim \operatorname{Dir}\left(\alpha H\left(T_{1}\right), \ldots, \alpha H\left(T_{K}\right)\right)
$$

Properties of the Dirichlet Process

$(\mathcal{X}, \mathcal{B})$ is some measurable space (the sigma-algebra \mathcal{B} is a collection of sets, and defines the events to be assigned probabilities)
\mathcal{P} is the collection of all probability measures P on $(\mathcal{X}, \mathcal{B})$
ν^{X} is the posterior distribution of a random probability measure P, with prior distribution ν, given observed data $X \sim P$

P1 \mathcal{D}_{α} is a probability measure on $(\mathcal{P}, \mathcal{C})$,
P2 \mathcal{D}_{α} gives probability one to the subset of all discrete probability measures on $(\mathcal{X}, \mathcal{B})$, and
P3 the posterior distribution \mathcal{D}_{α}^{X} is the Dirichlet measure $\mathcal{D}_{\alpha+\delta_{X}}$ where δ_{X} is the probability measure degenerate at X.

The approach of Sethuraman $(1994,1980)$:

1. Explicitly construct a process which trivially satisfies P1-P2
2. Show that this process has Dirichlet marginals, and thus is in fact the Dirichlet process
3. Use this construction to establish P3

The Stick-Breaking Construction: Trivially A Discrete Probability Measure

In my notation from earlier this lecture, and past lectures:

Theorem 2.5.3. Let $\pi=\left\{\pi_{k}\right\}_{k=1}^{\infty}$ be an infinite sequence of mixture weights derived from the following stick-breaking process, with parameter $\alpha>0$:

$$
\begin{array}{ll}
\beta_{k} & \sim \operatorname{Beta}(1, \alpha) \\
\pi_{k}=\beta_{k} \prod_{\ell=1}^{k-1}\left(1-\beta_{\ell}\right)=\beta_{k}\left(1-\sum_{\ell=1}^{k-1} \pi_{\ell}\right) & k=1,2, \ldots
\end{array}
$$

Given a base measure H on Θ, consider the following discrete random measure:

$$
\begin{equation*}
G(\theta)=\sum_{k=1}^{\infty} \pi_{k} \delta\left(\theta, \theta_{k}\right) \quad \theta_{k} \sim H \tag{2.176}
\end{equation*}
$$

This construction guarantees that $G \sim \mathrm{DP}(\alpha, H)$. Conversely, samples from a Dirichlet process are discrete with probability one, and have a representation as in eq. (2.176).

From Stick-Breaking to Dirichlet: Setup

 In Sethuraman's notation:$$
\begin{aligned}
& P(\theta, \mathbf{Y} ; B)=P(B)=\sum_{n=1}^{\infty} p_{n} \delta_{Y_{n}}(B) \\
& p_{n}=\theta_{n} \prod_{1 \leq m \leq n-1}\left(1-\theta_{m}\right) \\
&\left(\theta_{1}, \theta_{2}, \ldots\right) \text { are i.i.d. with distribution } B(1, \alpha(\mathcal{X})) \\
&\left(Y_{1}, Y_{2}, \ldots\right) \text { are i.i.d. with distribution } \\
& \beta(B)=\alpha(B) / \alpha(\mathcal{X})
\end{aligned}
$$

A key consequence of the stick-breaking recursion:

$$
\begin{array}{r}
P(\boldsymbol{\theta}, \mathbf{Y} ; B)=\theta_{1} \delta_{Y_{1}}(B)+\left(1-\theta_{1}\right) P\left(\theta^{*}, \mathbf{Y}^{*} ; B\right) \\
\text { where } \quad \theta_{n}^{*}=\theta_{n+1} \quad Y_{n}^{*}=Y_{n+1}
\end{array}
$$

Equality in distribution:

$$
P \stackrel{\text { st }}{=} \theta_{1} \delta_{Y_{1}}+\left(1-\theta_{1}\right) P
$$

From Stick-Breaking to Dirichlet: Step 1

Theorem 3.4. Let $\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ be a measurable partition of \mathcal{X} and let $\mathbf{P}=$ $\left(P\left(B_{1}\right), P\left(B_{2}\right), \ldots, P\left(B_{k}\right)\right)$. Then the distribution of \mathbf{P} is the k-dimensional Dirichlet measure $\mathcal{D}_{\left(\alpha\left(B_{1}\right), \alpha\left(B_{2}\right), \ldots, \alpha\left(B_{k}\right)\right)}$.

Stick-breaking measure:

$$
P \stackrel{\text { st }}{=} \theta_{1} \delta_{Y_{1}}+\left(1-\theta_{1}\right) P
$$

Evaluating on finite partition: $\mathbf{P} \stackrel{\text { st }}{=} \theta_{1} \mathbf{D}+\left(1-\theta_{1}\right) \mathbf{P}$
\mathbf{D} takes the value \mathbf{e}_{j} with probability $\beta\left(B_{j}\right)$
The plan:
We first verify that the k-dimensional Dirichlet measure for \mathbf{P} satisfies the distributional equation (3.4) and then show that this solution is the unique solution.

Finite Dirichlet Distributions

$$
\begin{aligned}
p(\pi \mid \alpha) & =\frac{\Gamma\left(\sum_{k} \alpha_{k}\right)}{\prod_{k} \Gamma\left(\alpha_{k}\right)} \prod_{k=1}^{K} \pi_{k}^{\alpha_{k}-1} & \alpha_{k}>0 \\
\mathbb{E}_{\alpha}\left[\pi_{k}\right] & =\frac{\alpha_{k}}{\alpha_{0}} & \alpha_{0} \triangleq \sum_{k=1}^{K} \alpha_{k} \\
\operatorname{Var}_{\alpha}\left[\pi_{k}\right] & =\frac{K-1}{K^{2}\left(\alpha_{0}+1\right)} & \alpha_{k}=\frac{\alpha_{0}}{K}
\end{aligned}
$$

- Beta distribution is special case where $\mathrm{K}=2$:

$$
p(\pi \mid \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \pi^{\alpha-1}(1-\pi)^{\beta-1}
$$

From Stick-Breaking to Dirichlet: Step 2

 Evaluating on finite partition: $\mathbf{P} \stackrel{\text { st }}{=} \theta_{1} \mathbf{D}+\left(1-\theta_{1}\right) \mathbf{P}$
\mathbf{D} takes the value \mathbf{e}_{j} with probability $\beta\left(B_{j}\right)$

- Assume that P has distribution $\mathcal{D}_{\left(\alpha\left(B_{1}\right), \alpha\left(B_{2}\right), \ldots, \alpha\left(B_{k}\right)\right)}$
- Suppose first that $\mathbf{D}=\mathbf{e}_{j}$, we are interested in $\theta_{1} \mathcal{D}_{\mathrm{e}_{j}}+\left(1-\theta_{1}\right) \mathcal{D}_{\left(\alpha\left(B_{1}\right), \alpha\left(B_{2}\right), \ldots, \alpha\left(B_{k}\right)\right)}$
where samples from $\mathcal{D}_{\mathbf{e}_{j}}$ equal \mathbf{e}_{j} with probability one
- This has distribution $\mathcal{D}_{\left(\alpha\left(B_{1}\right), \alpha\left(B_{2}\right), \ldots, \alpha\left(B_{k}\right)\right)+\mathbf{e}_{j}}$

Lemma 3.1. Let $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}\right)$ and $\delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{k}\right)$ be k-dimensional vectors. Let U, V be independent k-dimensional random vectors with Dirichlet distributions \mathcal{D}_{γ} and \mathcal{D}_{δ}, respectively. Let W be independent of (U, V) and have a Beta distribution $B(\gamma, \delta)$, where $\gamma=\sum \gamma_{j}$ and $\delta=\sum \delta_{j}$. Then the distribution of $W U+(1-W) V$ is the Dirichlet distribution $\mathcal{D}_{\gamma+\delta}$.

From Stick-Breaking to Dirichlet: Step 3

Evaluating on finite partition: $\mathbf{P} \stackrel{\text { st }}{=} \theta_{1} \mathbf{D}+\left(1-\theta_{1}\right) \mathbf{P}$
\mathbf{D} takes the value \mathbf{e}_{j} with probability $\beta\left(B_{j}\right)$

- Assume that P has distribution $\mathcal{D}_{\left(\alpha\left(B_{1}\right), \alpha\left(B_{2}\right), \ldots, \alpha\left(B_{k}\right)\right)}$
- Given that $\mathbf{D}=\mathbf{e}_{j}$, the right-hand-side has distribution

$$
\mathcal{D}_{\left(\alpha\left(B_{1}\right), \alpha\left(B_{2}\right), \ldots, \alpha\left(B_{k}\right)\right)+\mathbf{e}_{j}}
$$

- Averaging over \mathbf{D} with weights $\beta\left(B_{j}\right)=\alpha\left(B_{j}\right) / \alpha(\mathcal{X})$ gives

$$
\mathcal{D}_{\left(\alpha\left(B_{1}\right), \alpha\left(B_{2}\right), \ldots, \alpha\left(B_{k}\right)\right)}
$$

Lemma 3.2. Let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{k}\right), \gamma=\sum \gamma_{j}$ and let $\beta_{j}=\gamma_{j} / \gamma, j=1,2, \ldots, k$. Then

$$
\sum \beta_{j} \mathcal{D}_{\gamma+e_{j}}=\mathcal{D}_{\gamma} .
$$

This conclusion can also be written as $E\left(\mathcal{D}_{\gamma+\mathbf{z}}\right)=\mathcal{D}_{\gamma}$, where \mathbf{Z} is a random vector that takes the values \mathbf{e}_{j} with probability $\gamma_{j} / \gamma, j=1, \ldots, k$.

From Stick-Breaking to Dirichlet: Step 4

 Evaluating on finite partition: $\mathbf{P} \stackrel{\text { st }}{=} \theta_{1} \mathbf{D}+\left(1-\theta_{1}\right) \mathbf{P}$$\mathbf{D}$ takes the value \mathbf{e}_{j} with probability $\beta\left(B_{j}\right)$

- We have shown that $\mathcal{D}_{\left(\alpha\left(B_{1}\right), \alpha\left(B_{2}\right), \ldots, \alpha\left(B_{k}\right)\right)}$ is a solution of this recurrence
- In fact, it is the unique solution (proof by contradiction)
- Intuition for Lemma 3.2: Prior distribution can always be written as a weighted combination of posteriors

DP Posteriors and Conjugacy

Proposition 2.5.1. Let $G \sim \operatorname{DP}(\alpha, H)$ be a random measure distributed according to a Dirichlet process. Given N independent observations $\bar{\theta}_{i} \sim G$, the posterior measure also follows a Dirichlet process:

$$
\begin{equation*}
p\left(G \mid \bar{\theta}_{1}, \ldots, \bar{\theta}_{N}, \alpha, H\right)=\operatorname{DP}\left(\alpha+N, \frac{1}{\alpha+N}\left(\alpha H+\sum_{i=1}^{N} \delta_{\bar{\theta}_{i}}\right)\right) \tag{2.169}
\end{equation*}
$$

Proof Hint: For any finite partition, we have
$p\left(\left(G\left(T_{1}\right), \ldots, G\left(T_{K}\right)\right) \mid \bar{\theta} \in T_{k}\right)=\operatorname{Dir}\left(\alpha H\left(T_{1}\right), \ldots, \alpha H\left(T_{k}\right)+1, \ldots, \alpha H\left(T_{K}\right)\right)$
An observation must be of one of the countably infinite atoms which compose the random Dirichlet measure

DPs are Neutral: "Almost" independent

The distribution of a random probability measure G is neutral with respect to a finite partition $\left(T_{1}, \ldots, T_{K}\right)$ iff

$$
\begin{aligned}
& G\left(T_{k}\right) \quad \text { is independent of } \quad\left\{\left.\frac{G\left(T_{\ell}\right)}{1-G\left(T_{k}\right)} \right\rvert\, \ell \neq k\right\} \\
& \\
& \text { given that } G\left(T_{k}\right)<1 .
\end{aligned}
$$

Theorem 2.5.2. Consider a distribution \mathcal{P} on probability measures G for some space Θ. Assume that \mathcal{P} assigns positive probability to more than one measure G, and that with probability one samples $G \sim \mathcal{P}$ assign positive measure to at least three distinct points $\theta \in \Theta$. The following conditions are then equivalent:
(i) $\mathcal{P}=\mathrm{DP}(\alpha, H)$ is a Dirichlet process for some base measure H on Θ.
(ii) \mathcal{P} is neutral with respect to every finite, measurable partition of Θ.
(iii) For every measurable $T \subset \Theta$, and any N observations $\bar{\theta}_{i} \sim G$, the posterior distribution $\left.p(G)(T) \mid \bar{\theta}_{1}, \ldots, \bar{\theta}_{N}\right)$ depends only on the number of observations that fall within T (and not their particular locations).

