Applied Bayesian Nonparametrics

Special Topics in Machine Learning Brown University CSCI 2950-P, Fall 2011

September 29: Dirichlet Process Theory, MCMC for DP Mixture Models

DP Mixture Models

 $z_i \sim \pi$ $x_i \sim F(\theta_{z_i})$

DPs and Polya Urns

Theorem 2.5.4. Let $G \sim DP(\alpha, H)$ be distributed according to a Dirichlet process, where the base measure H has corresponding density $h(\theta)$. Consider a set of N observations $\overline{\theta}_i \sim G$ taking K distinct values $\{\theta_k\}_{k=1}^K$. The predictive distribution of the next observation then equals

$$p(\bar{\theta}_{N+1} = \theta \mid \bar{\theta}_1, \dots, \bar{\theta}_N, \alpha, H) = \frac{1}{\alpha + N} \left(\alpha h(\theta) + \sum_{k=1}^K N_k \delta(\theta, \theta_k) \right)$$
(2.180)

where N_k is the number of previous observations of θ_k , as in eq. (2.179).

My variation on the classical balls in urns analogy:

- Consider an urn containing α pounds of very tiny, colored sand (the space of possible colors is Θ)
- Take out one grain of sand, record its color as $\bar{\theta}_1$
- Put that grain back, add 1 extra pound of that color sand
- Repeat this process...

DP Mixture: Polya Urn Sampler

- Marginalize G to produce Polya urn predictive rule
- Escobar & West (1995)
- Algorithm 1 of Neal (2000)
- Basic Polya urn sampler of Ishwaran & James (2001)
- Slow: Can only change cluster centers by destroying and recreating that cluster

$$G(\theta) = \sum_{k=1}^{\infty} \pi_k \delta(\theta, \theta_k)$$

$$\pi \sim \operatorname{GEM}(\alpha)$$

$$\theta_k \sim H(\lambda) \qquad k = 1, 2, \dots$$

$$\bar{\theta}_i \sim G$$

$$x_i \sim F(\bar{\theta}_i)$$

DP Mixture: CRP Sampler

- Conceptually separates cluster allocations and parameters
- Marginalize cluster sizes to give Chinese restaurant process prior on data partitions
- Accelerated Polya urn sampler of Ishwaran & James (2001)
- Algorithm 2 of Neal (2000)
- Algorithm 3 of Neal (2000) also marginalizes (collapses) cluster parameters (needs conjugacy)
- Rasmussen (2001) elaborates
- Effective for limited range of models it applies to...

$$\pi \sim \text{GEM}(\alpha)$$

$$\theta_k \sim H(\lambda) \qquad k = 1, 2, \dots$$

$$z_i \sim \pi$$

$$x_i \sim F(\theta_{z_i})$$

Collapsed DP Sampler: 2 Iterations

Collapsed DP Sampler: 10 Iterations

Collapsed DP Sampler: 50 Iterations

DP Posterior Number of Clusters

These results also place a prior distribution on the DP concentration parameter α , and resample it as part of the MCMC inference (Escobar & West, 1995)

DP Stick-Breaking Construction $p(x) = \sum_{k=1}^{\infty} \pi_k f(x \mid \theta_k)$

Stick-Breaking Construction: Sethuraman, 1994

DP Mixture: Stick-Breaking Sampler

- Explicitly instantiate and resample cluster sizes (stick-breaking prior)
- Without marginalization there are infinitely many cluster size parameters
- Blocked Gibbs sampler of Ishwaran & James (2001) uses analytic bounds to build a finite truncation
- Main benefit: Flexibility

$$\pi \sim \text{GEM}(\alpha)$$

$$\theta_k \sim H(\lambda) \qquad k = 1, 2, \dots$$

$$z_i \sim \pi$$

$$x_i \sim F(\theta_{z_i})$$

Dirichlet Processes

Properties of the Dirichlet Process

 $(\mathcal{X}, \mathcal{B})$ is some measurable space (the sigma-algebra \mathcal{B} is a collection of sets, and defines the events to be assigned probabilities)

 ${\mathcal P}_{-}$ is the collection of all probability measures ${\it P}$ on $({\mathcal X}, {\mathcal B})$

- ν^X is the posterior distribution of a random probability measure *P*, with prior distribution ν^2 , given observed data $X \sim P$
- **P1** \mathcal{D}_{α} is a probability measure on $(\mathcal{P}, \mathcal{C})$,
- **P2** \mathcal{D}_{α} gives probability one to the subset of all discrete probability measures on $(\mathcal{X}, \mathcal{B})$, and
- **P3** the posterior distribution \mathcal{D}_{α}^{X} is the Dirichlet measure $\mathcal{D}_{\alpha+\delta_{X}}$ where δ_{X} is the probability measure degenerate at X.

The approach of Sethuraman (1994, 1980):

- 1. Explicitly construct a process which trivially satisfies P1-P2
- 2. Show that this process has Dirichlet marginals, and thus is in fact the Dirichlet process
- 3. Use this construction to establish P3

The Stick-Breaking Construction: Trivially A Discrete Probability Measure

In my notation from earlier this lecture, and past lectures:

Theorem 2.5.3. Let $\pi = {\pi_k}_{k=1}^{\infty}$ be an infinite sequence of mixture weights derived from the following stick-breaking process, with parameter $\alpha > 0$:

$$\beta_k \sim \text{Beta}(1, \alpha) \qquad k = 1, 2, \dots \qquad (2.174)$$
$$\pi_k = \beta_k \prod_{\ell=1}^{k-1} (1 - \beta_\ell) = \beta_k \left(1 - \sum_{\ell=1}^{k-1} \pi_\ell \right) \qquad (2.175)$$

Given a base measure H on Θ , consider the following discrete random measure:

$$G(\theta) = \sum_{k=1}^{\infty} \pi_k \delta(\theta, \theta_k) \qquad \qquad \theta_k \sim H \qquad (2.176)$$

This construction guarantees that $G \sim DP(\alpha, H)$. Conversely, samples from a Dirichlet process are discrete with probability one, and have a representation as in eq. (2.176).

From Stick-Breaking to Dirichlet: Setup

 \sim

In Sethuraman's notation:

$$\begin{split} P(\theta,\mathbf{Y};B) &= P(B) = \sum_{n=1}^{\infty} p_n \delta_{Y_n}(B) \\ p_n &= \theta_n \prod_{1 \leq m \leq n-1} (1 - \theta_m) \\ (\theta_1,\theta_2,\ldots) & \text{ are i.i.d. with distribution } B(1,\alpha(\mathcal{X})) \\ (Y_1,Y_2,\ldots) & \text{ are i.i.d. with distribution } \beta(B) &= \alpha(B)/\alpha(\mathcal{X}) \end{split}$$

A key consequence of the stick-breaking recursion:

$$\begin{split} P(\theta,\mathbf{Y};B) &= \theta_1 \delta_{Y_1}(B) + (1-\theta_1) P(\theta^*,\mathbf{Y}^*;B) \\ \text{where} \qquad \theta_n^* &= \theta_{n+1} \qquad Y_n^* = Y_{n+1} \end{split}$$

Equality in distribution: $P \stackrel{\text{st}}{=} \theta_1 \delta_{Y_1} + (1 - \theta_1) P_1$

From Stick-Breaking to Dirichlet: Step 1

Theorem 3.4. Let $\{B_1, B_2, \ldots, B_k\}$ be a measurable partition of \mathcal{X} and let $\mathbf{P} = (P(B_1), P(B_2), \ldots, P(B_k))$. Then the distribution of \mathbf{P} is the k-dimensional Dirichlet measure $\mathcal{D}_{(\alpha(B_1), \alpha(B_2), \ldots, \alpha(B_k))}$.

Stick-breaking measure: $P \stackrel{\text{st}}{=} \theta_1 \delta_{Y_1} + (1 - \theta_1) P_1$ Evaluating on finite partition: $\mathbf{P} \stackrel{\text{st}}{=} \theta_1 \mathbf{D} + (1 - \theta_1) \mathbf{P}_1$ \mathbf{D} takes the value \mathbf{e}_j with probability $\beta(B_j)$

The plan:

We first verify that the k-dimensional Dirichlet measure for \mathbf{P} satisfies the distributional equation (3.4) and then show that this solution is the unique solution.

Finite Dirichlet Distributions

$$p(\pi \mid \alpha) = \frac{\Gamma(\sum_{k} \alpha_{k})}{\prod_{k} \Gamma(\alpha_{k})} \prod_{k=1}^{K} \pi_{k}^{\alpha_{k}-1} \qquad \alpha_{k} > 0$$

$$\mathbb{E}_{\alpha}[\pi_{k}] = \frac{\alpha_{k}}{\alpha_{0}} \qquad \alpha_{0} \triangleq \sum_{k=1}^{K} \alpha_{k}$$

$$\operatorname{Var}_{\alpha}[\pi_{k}] = \frac{K-1}{K^{2}(\alpha_{0}+1)} \qquad \alpha_{k} = \frac{\alpha_{0}}{K}$$

• Beta distribution is special case where K=2:

$$p(\pi \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} \pi^{\alpha - 1} (1 - \pi)^{\beta - 1} \qquad \alpha, \beta > 0$$

From Stick-Breaking to Dirichlet: Step 2 Evaluating on finite partition: $\mathbf{P} \stackrel{\text{st}}{=} \theta_1 \mathbf{D} + (1 - \theta_1) \mathbf{P}$ \mathbf{D} takes the value \mathbf{e}_j with probability $\beta(B_j)$ • Assume that P has distribution $\mathcal{D}_{(\alpha(B_1),\alpha(B_2),\dots,\alpha(B_k))}$ • Suppose first that $\mathbf{D} = \mathbf{e}_j$, we are interested in

 $\theta_1 \mathcal{D}_{\mathbf{e}_j} + (1 - \theta_1) \mathcal{D}_{(\alpha(B_1), \alpha(B_2), \dots, \alpha(B_k))}$ where samples from $\mathcal{D}_{\mathbf{e}_j}$ equal \mathbf{e}_j with probability one

• This has distribution $\mathcal{D}_{(\alpha(B_1),\alpha(B_2),\ldots,\alpha(B_k))+e_j}$ Lemma 3.1. Let $\gamma = (\gamma_1, \gamma_2, \ldots, \gamma_k)$ and $\delta = (\delta_1, \delta_2, \ldots, \delta_k)$ be k-dimensional vectors. Let U, V be independent k-dimensional random vectors with Dirichlet distributions \mathcal{D}_{γ} and \mathcal{D}_{δ} , respectively. Let W be independent of (U, V) and have a Beta distribution $B(\gamma, \delta)$, where $\gamma = \sum \gamma_j$ and $\delta = \sum \delta_j$. Then the distribution of WU + (1 - W)V is the Dirichlet distribution $\mathcal{D}_{\gamma+\delta}$. From Stick-Breaking to Dirichlet: Step 3 Evaluating on finite partition: $\mathbf{P} \stackrel{\text{st}}{=} \theta_1 \mathbf{D} + (1 - \theta_1) \mathbf{P}$ \mathbf{D} takes the value \mathbf{e}_j with probability $\beta(B_j)$

- Assume that P has distribution $\mathcal{D}_{(\alpha(B_1),\alpha(B_2),\ldots,\alpha(B_k))}$
- Given that $\mathbf{D}=\mathbf{e}_j$, the right-hand-side has distribution $\mathcal{D}_{(lpha(B_1),lpha(B_2),...,lpha(B_k))+\mathbf{e}_j}$
- Averaging over \mathbf{D} with weights $\beta(B_j) = \alpha(B_j)/\alpha(\mathcal{X})$ gives $\mathcal{D}_{(\alpha(B_1), \alpha(B_2), ..., \alpha(B_k))}$

Lemma 3.2. Let $\gamma = (\gamma_1, \ldots, \gamma_k)$, $\gamma = \sum \gamma_j$ and let $\beta_j = \gamma_j / \gamma, j = 1, 2, \ldots, k$. Then

$$\sum \beta_j \mathcal{D}_{\gamma + \mathbf{e}_j} = \mathcal{D}_{\gamma}.$$

This conclusion can also be written as $E(\mathcal{D}_{\gamma+\mathbf{Z}}) = \mathcal{D}_{\gamma}$, where \mathbf{Z} is a random vector that takes the values \mathbf{e}_j with probability $\gamma_j/\gamma, j = 1, \ldots, k$.

From Stick-Breaking to Dirichlet: Step 4 Evaluating on finite partition: $\mathbf{P} \stackrel{\text{st}}{=} \theta_1 \mathbf{D} + (1 - \theta_1) \mathbf{P}$ **D** takes the value \mathbf{e}_i with probability $\beta(B_i)$

- We have shown that $\mathcal{D}_{(\alpha(B_1),\alpha(B_2),...,\alpha(B_k))}$ is a solution of this recurrence
- In fact, it is the unique solution (proof by contradiction)
- Intuition for Lemma 3.2: Prior distribution can always be written as a weighted combination of posteriors

DP Posteriors and Conjugacy

Proposition 2.5.1. Let $G \sim DP(\alpha, H)$ be a random measure distributed according to a Dirichlet process. Given N independent observations $\bar{\theta}_i \sim G$, the posterior measure also follows a Dirichlet process:

$$p(G \mid \bar{\theta}_1, \dots, \bar{\theta}_N, \alpha, H) = \mathrm{DP}\left(\alpha + N, \frac{1}{\alpha + N}\left(\alpha H + \sum_{i=1}^N \delta_{\bar{\theta}_i}\right)\right)$$
(2.169)

Proof Hint: For any finite partition, we have $p((G(T_1), \ldots, G(T_K)) | \bar{\theta} \in T_k) = Dir(\alpha H(T_1), \ldots, \alpha H(T_k) + 1, \ldots, \alpha H(T_K))$

An observation must be of one of the countably infinite atoms which compose the random Dirichlet measure

DPs are Neutral: "Almost" independent

The distribution of a random probability measure G is neutral with respect to a finite partition (T_1, \ldots, T_K) iff

 $G(T_k) \quad \text{is independent of} \quad \left\{ \frac{G(T_\ell)}{1 - G(T_k)} \middle| \ell \neq k \right\}$ given that $G(T_k) < 1$.

Theorem 2.5.2. Consider a distribution \mathcal{P} on probability measures G for some space Θ . Assume that \mathcal{P} assigns positive probability to more than one measure G, and that with probability one samples $G \sim \mathcal{P}$ assign positive measure to at least three distinct points $\theta \in \Theta$. The following conditions are then equivalent:

- (i) $\mathcal{P} = DP(\alpha, H)$ is a Dirichlet process for some base measure H on Θ .
- (ii) \mathcal{P} is neutral with respect to every finite, measurable partition of Θ .
- (iii) For every measurable $T \subset \Theta$, and any N observations $\bar{\theta}_i \sim G$, the posterior distribution $p(G(T) | \bar{\theta}_1, \ldots, \bar{\theta}_N)$ depends only on the number of observations that fall within T (and not their particular locations).