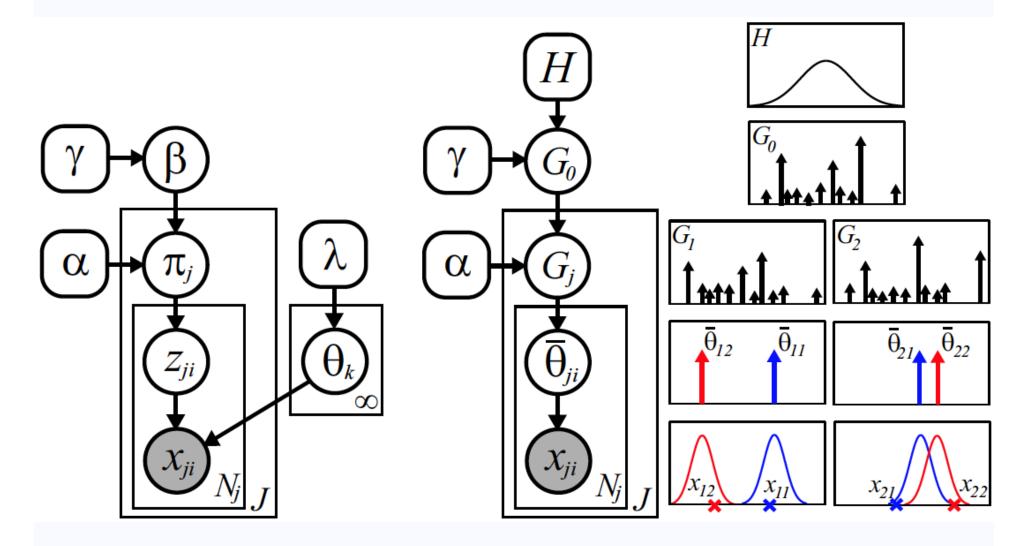
Applied Bayesian Nonparametrics

Special Topics in Machine Learning Brown University CSCI 2950-P, Fall 2011 October 4: Hierarchical Dirichlet Processes in Computer Vision

Hierarchical Dirichlet Process

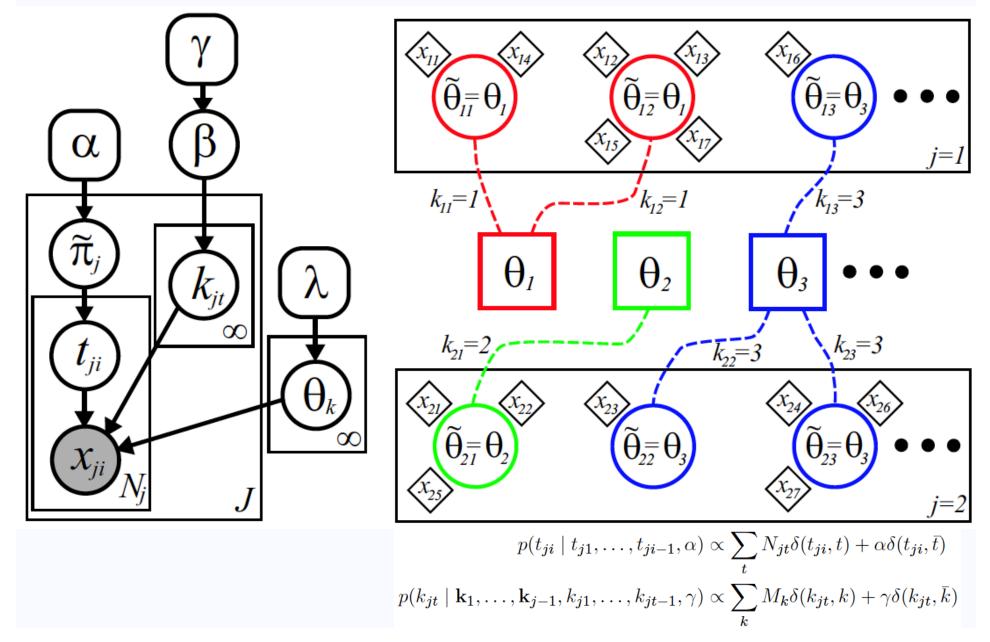


Hierarchical Dirichlet Process

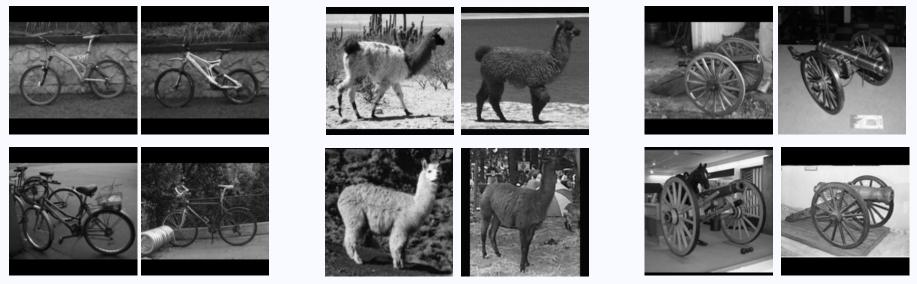
$$G_{0}(\theta) = \sum_{k=1}^{\infty} \beta_{k} \delta(\theta, \theta_{k})$$
$$G_{j}(\theta) = \sum_{t=1}^{\infty} \widetilde{\pi}_{jt} \delta(\theta, \widetilde{\theta}_{jt})$$
$$G_{j}(\theta) = \sum_{k=1}^{\infty} \pi_{jk} \delta(\theta, \theta_{k})$$

 $\beta \sim \operatorname{GEM}(\gamma)$ $\theta_k \sim H(\lambda) \qquad k = 1, 2, \dots$ $\widetilde{\pi}_j \sim \operatorname{GEM}(\alpha)$ $\widetilde{\theta}_{jt} \sim G_0 \qquad t = 1, 2, \dots$ $\pi_{jk} = \sum_{t \mid k_{jt} = k} \widetilde{\pi}_{jt}$

Chinese Restaurant Franchise



Visual Object Categorization



Bicycles

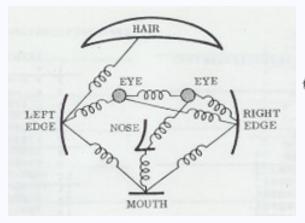
Llamas

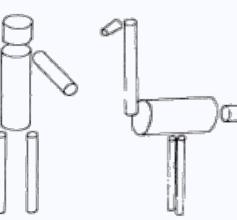
Cannons

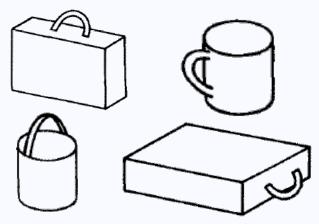
GOALS:

- Visually recognize and localize object categories
- Robustly *learn* appearance models from few examples
 - Use hierarchical models to *transfer* knowledge among categories
 - > Nonparametric, *Dirichlet process* prior gives flexibility

Part-Based Models for Objects

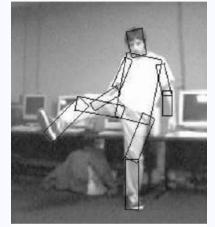




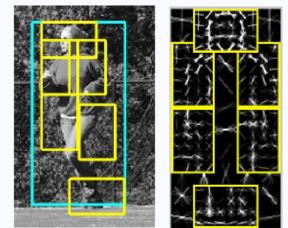


Pictorial Structures *Fischler & Elschlager, 1973* Generalized Cylinders Marr & Nishihara, 1978 **Recognition by Components** *Biederman, 1987*

Constellation Model *Perona, Weber, Welling, Fergus, Fei-Fei, 2000 to ...*

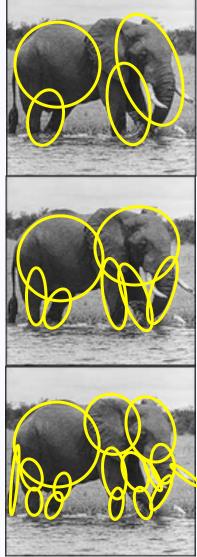


Efficient Matching Felzenszwalb & Huttenlocher, 2005



Discriminative Parts Felzenszwalb, McAllester, Ramanan, 2008 to ...

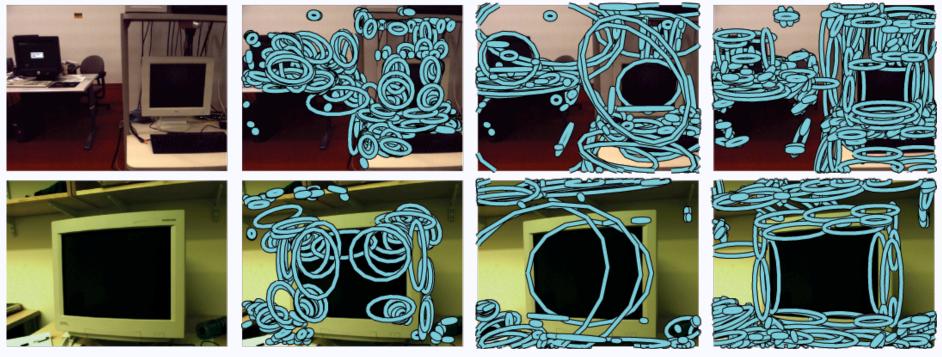
Counting Objects & Parts



How many parts?

How many objects?

From Images to Features



Affinely Adapted Harris Corners

Maximally Stable Extremal Regions

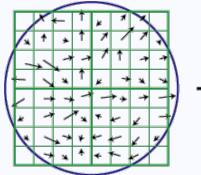
Linked Sequences of Canny Edges

- Some invariance to lighting & pose variations
- Dense, multiscale, over-segmentation of image

A Discrete Feature Vocabulary

SIFT Descriptors

- Normalized histograms of orientation energy
- Compute ~1,000 word dictionary via K-means
- Map each feature to nearest visual word



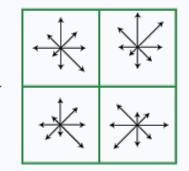


Image gradients

Keypoint descriptor Lowe, IJCV 2004

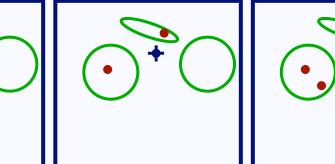
 $w_{ji} \longrightarrow$

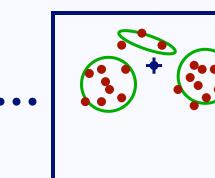
 $v_{ji} \longrightarrow$

appearance offeature *i* in image *j*2D position offeature *i* in image *j*



Generative Model for Objects

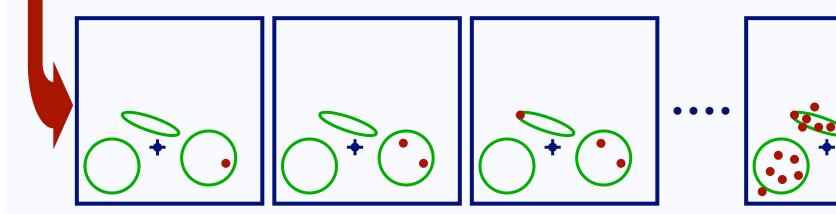




For each image: Sample a reference position

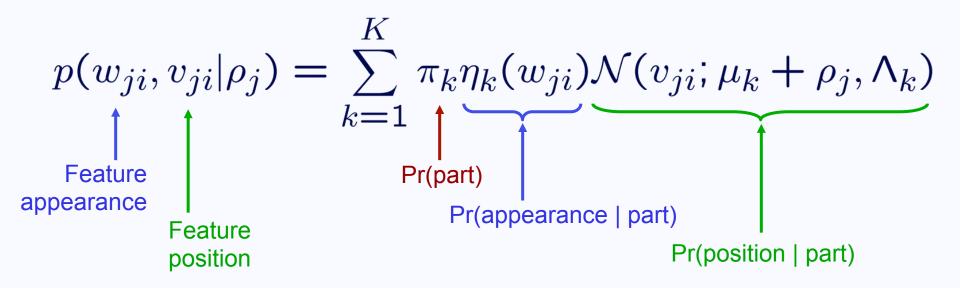
For each feature:

- Randomly choose one part
- Sample from that part's feature distribution

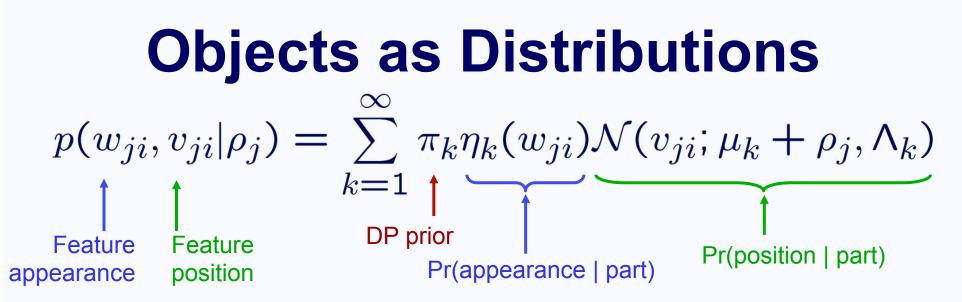


Objects as Mixture Models

• For a fixed reference position, our generative model is equivalent to a finite mixture model:



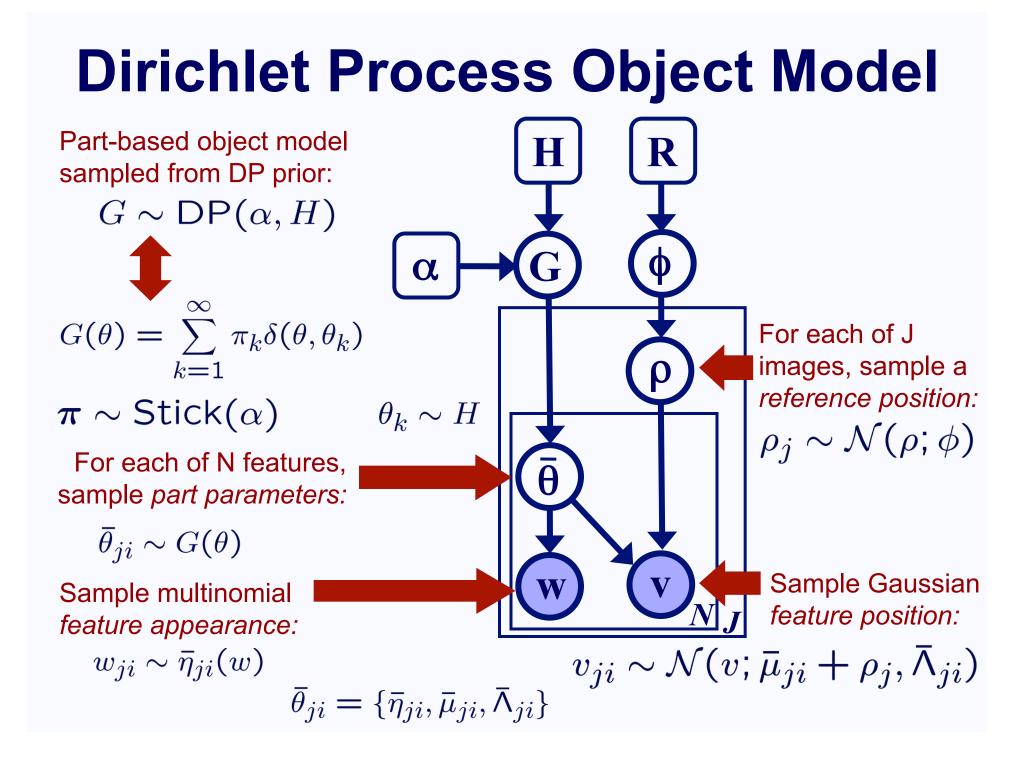
How many parts should we choose?
 Too few reduces model accuracy
 Too many causes overfitting & poor generalization

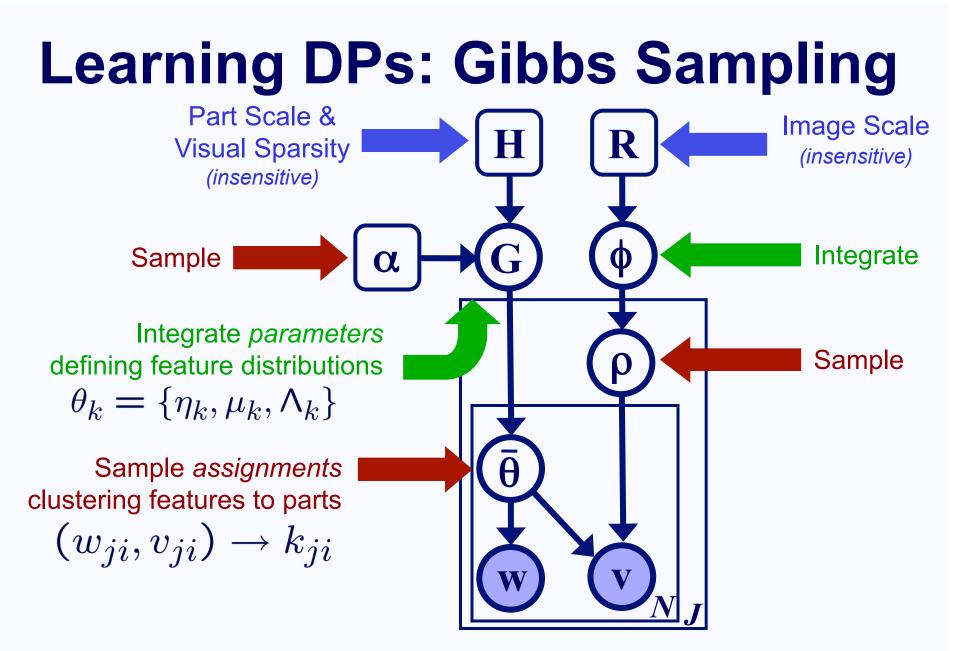


• Parts are defined by *parameters*, which encode distributions on visual features:

$$\theta_k = \{\eta_k, \mu_k, \Lambda_k\}$$

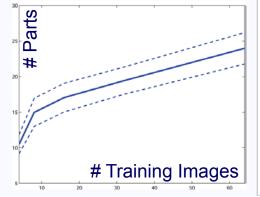
• Objects are defined by *distributions* on the infinitely many potential part parameters: $G(\theta) = \sum_{k=1}^{\infty} \pi_k \delta(\theta, \theta_k) \qquad \pi \sim \text{Stick}(\alpha)$

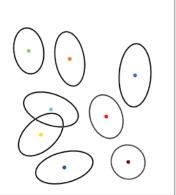


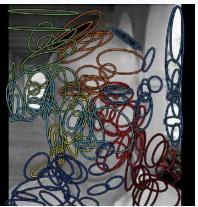


Dirichlet processes have many desirable analytic properties, which lead to efficient *Rao-Blackwellized* learning algorithms

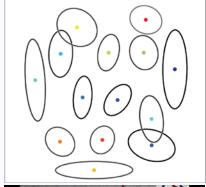
Decomposing Faces into Parts



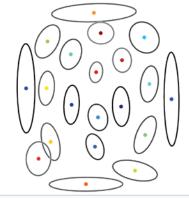


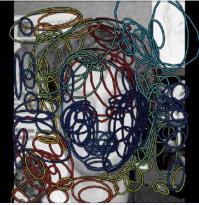


4 Images



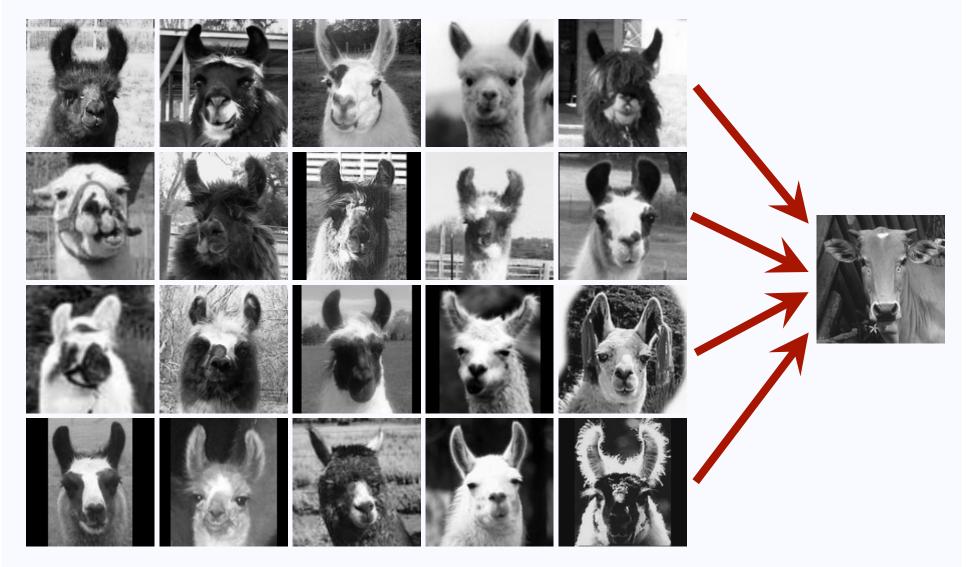
16 Images





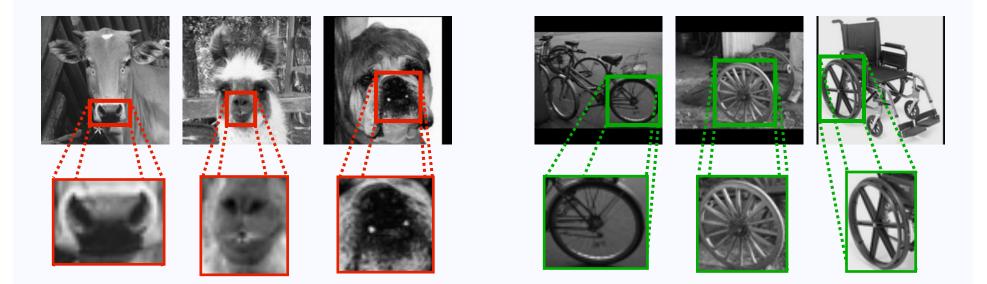
64 Images

Generalizing Across Categories

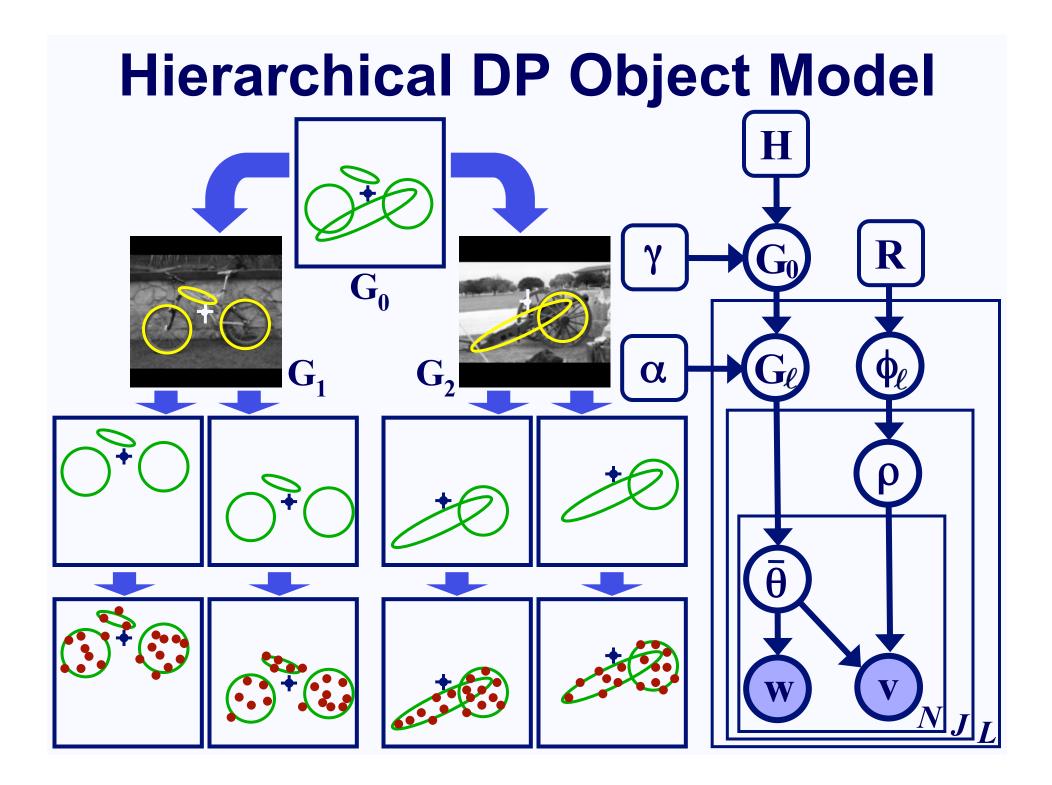


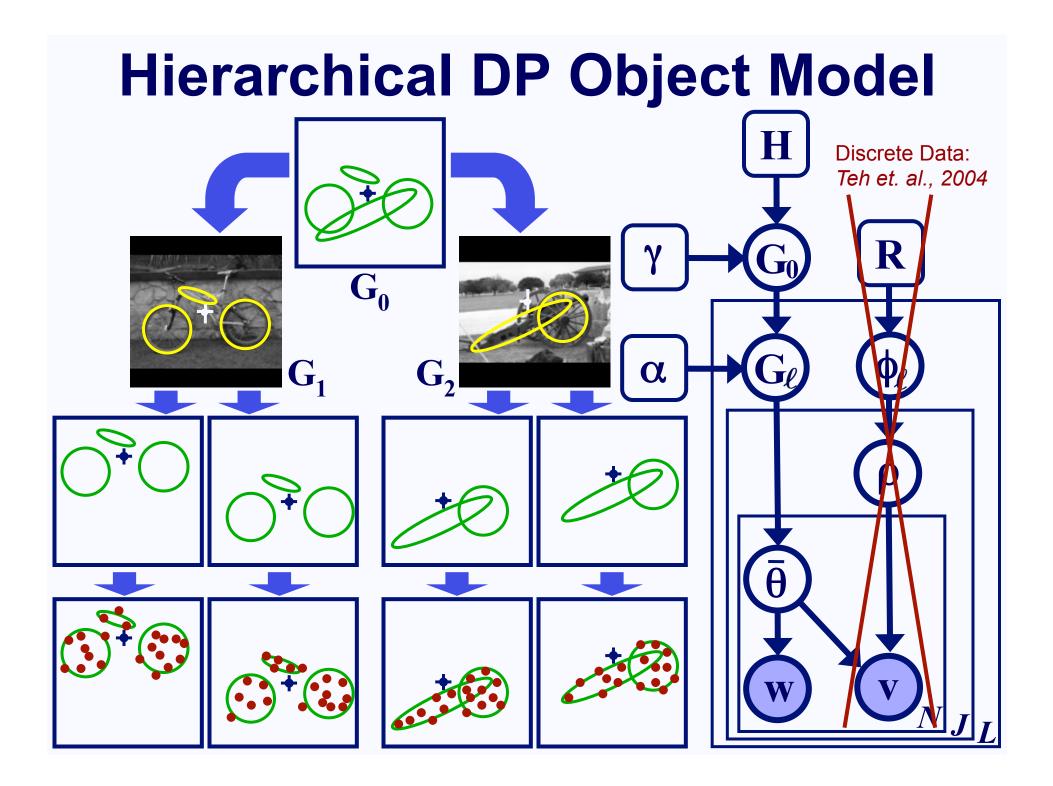
Can we transfer knowledge from one object category to another?

Learning Shared Parts

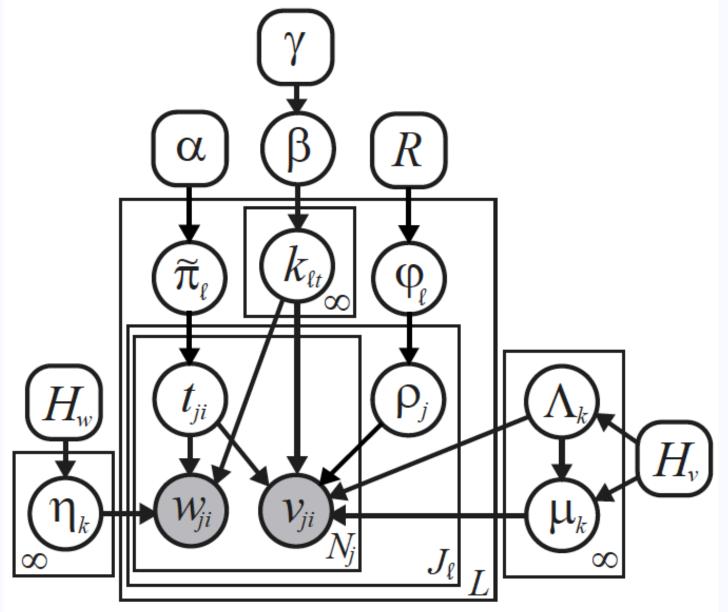


- Objects are often locally similar in appearance
- Discover *parts* shared across categories
 How many total parts should we share?
 How many parts should each category use?

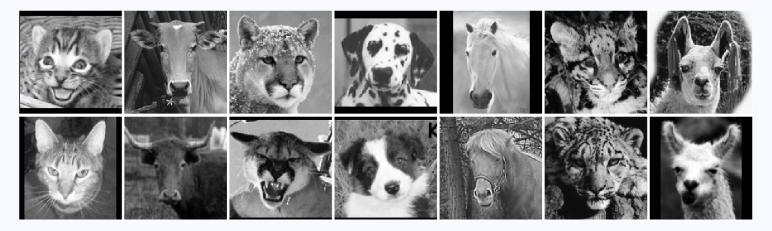


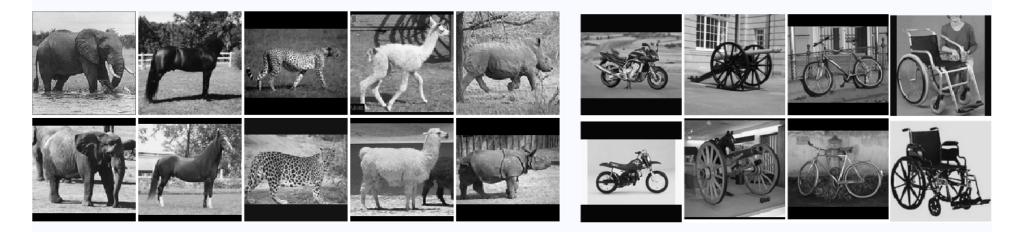


Chinese Restaurant Franchise



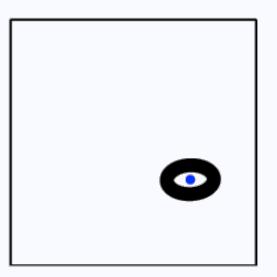
Sharing Parts: 16 Categories





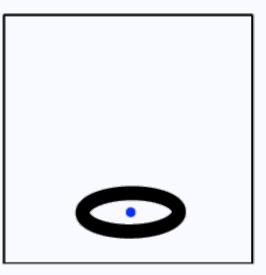
- Caltech 101 Dataset (Li & Perona)
- Horses (Borenstein & Ullman)
- Cat & dog faces (Vidal-Naquet & Ullman)
- Bikes from Graz-02 (Opelt & Pinz)
- Google...

Visualization of Shared Parts



Pr(position | part)

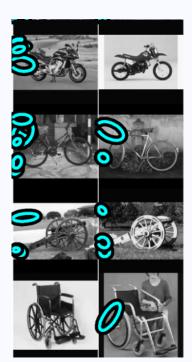
Visualization of Shared Parts

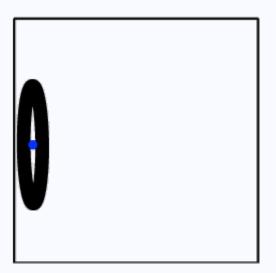


Pr(position | part)

Pr(appearance | part)

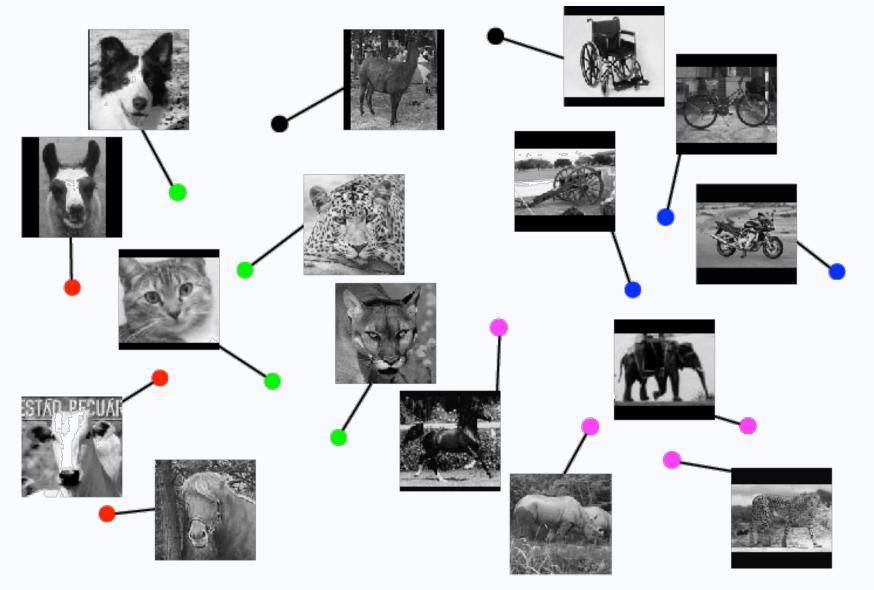
Visualization of Shared Parts





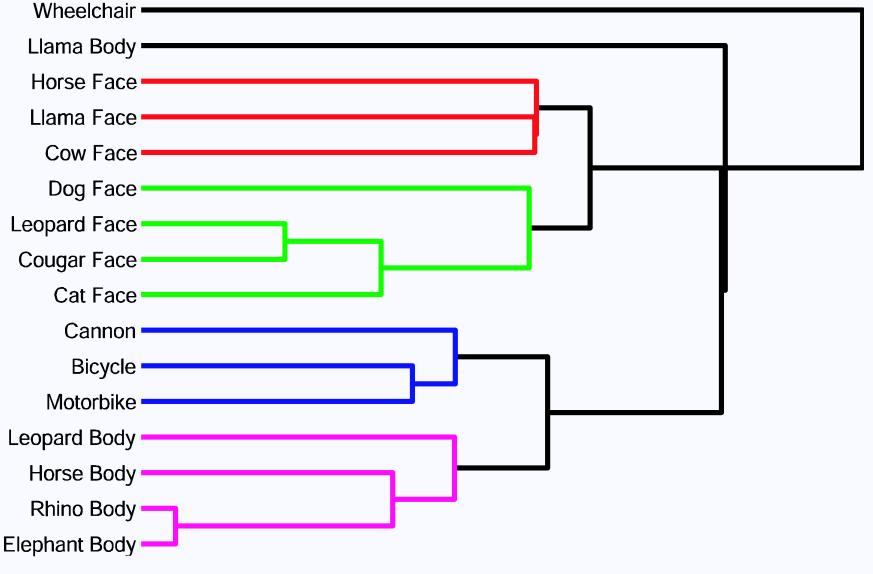
Pr(position | part)

Visualization of Part Densities



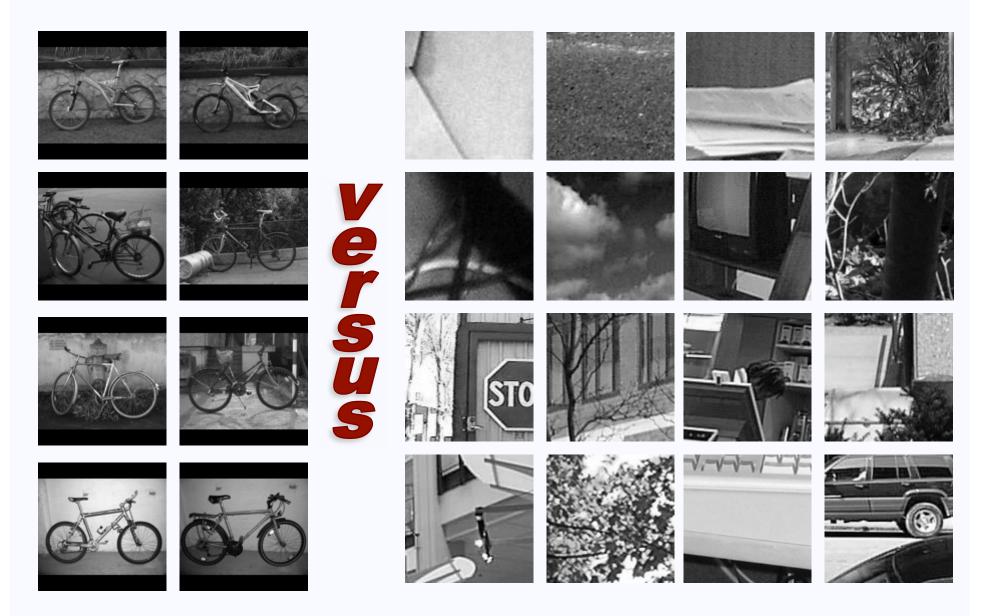
MDS Embedding of Pr(part | object)

Visualization of Part Densities

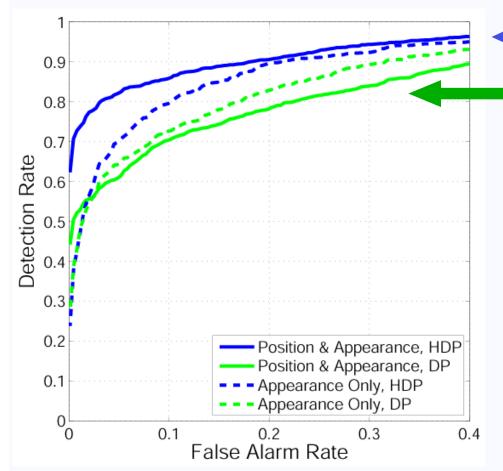


Hierarchical Clustering of Pr(part | object)

Detection Task



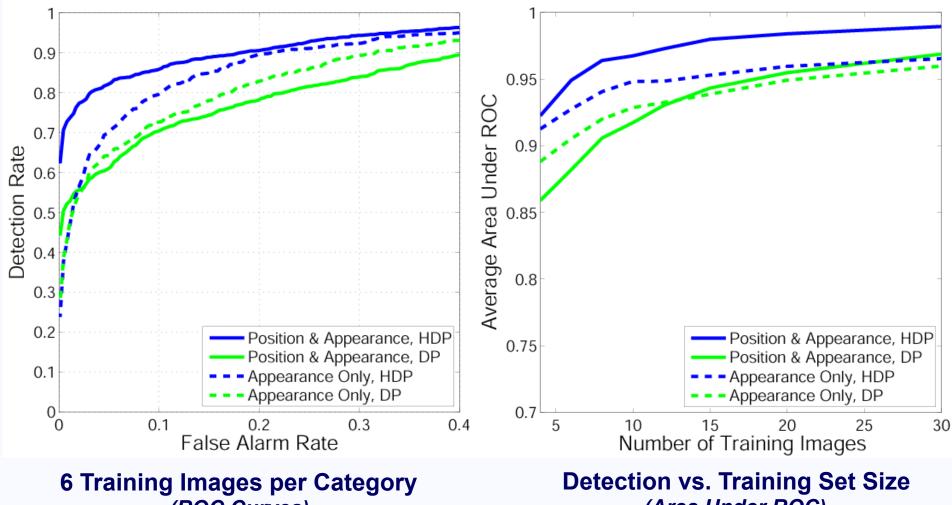
Detection Results



6 Training Images per Category (ROC Curves) Shared Parts more accurate than Unshared Parts

Modeling feature positions *improves shared* detection, but *hurts unshared* detection

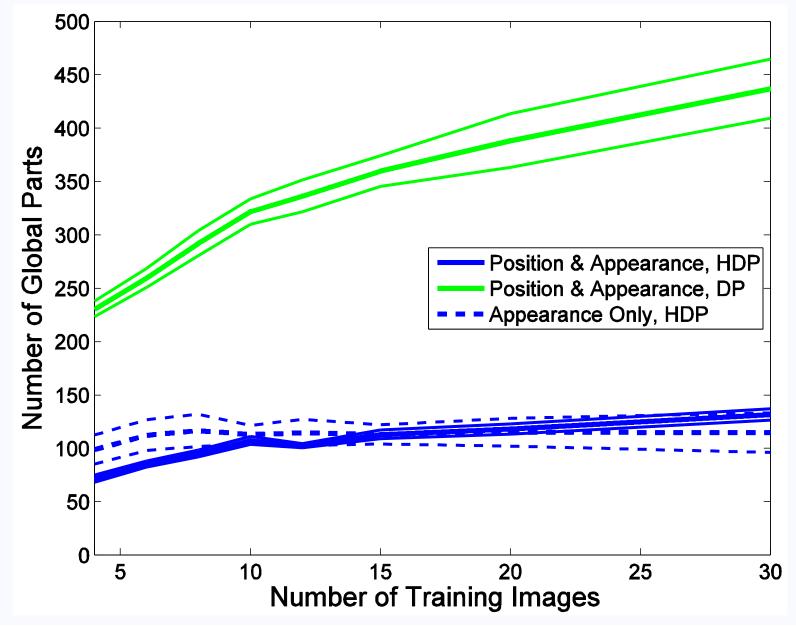
Detection Results



(ROC Curves)

(Area Under ROC)

Sharing Simplifies Models



Recognition Task

e

r s u s



Recognition Results

