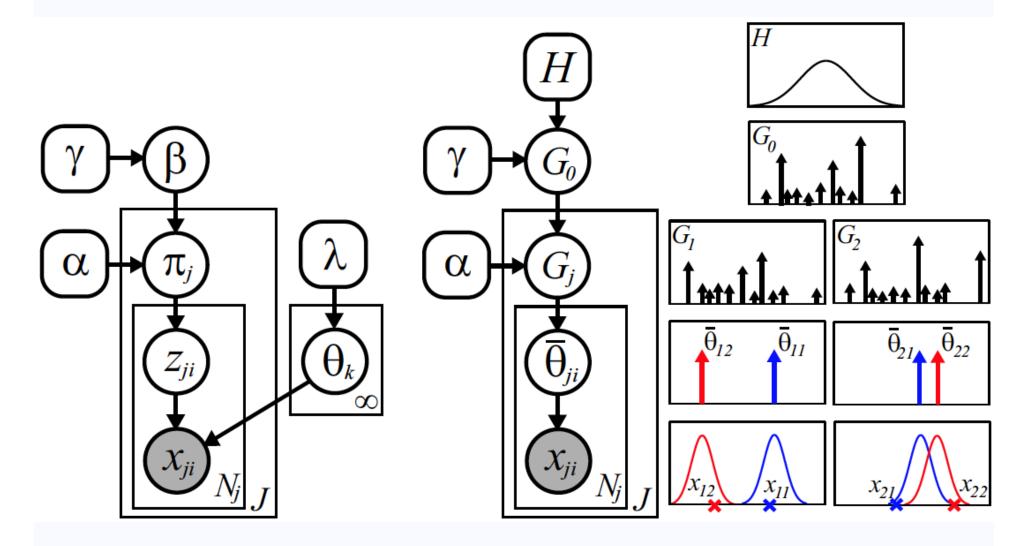
Applied Bayesian Nonparametrics

Special Topics in Machine Learning Brown University CSCI 2950-P, Fall 2011

October 6: Hierarchical, Nested, and Transformed Dirichlet Processes

Hierarchical Dirichlet Process

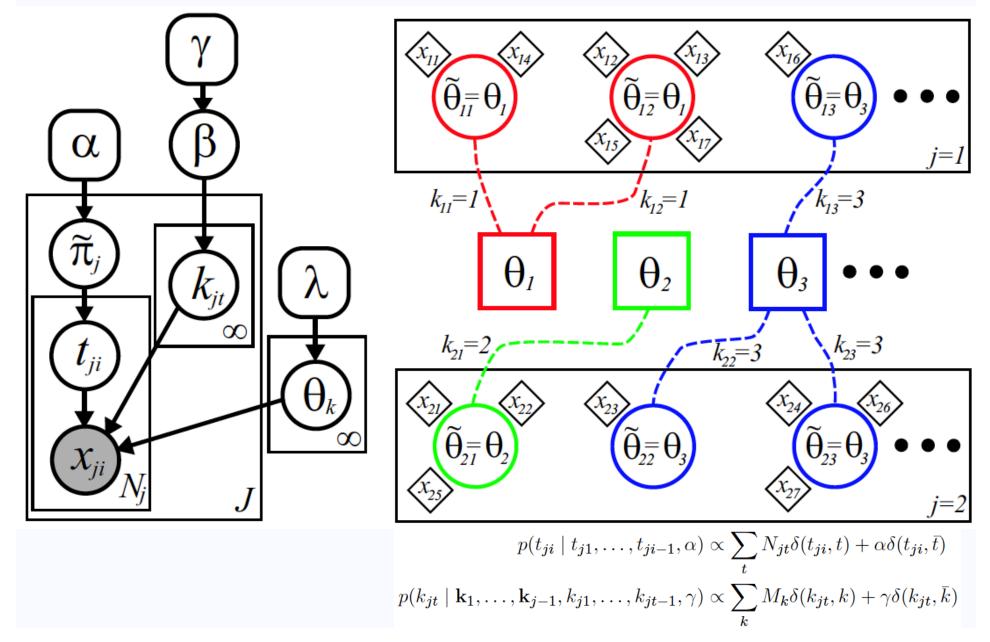


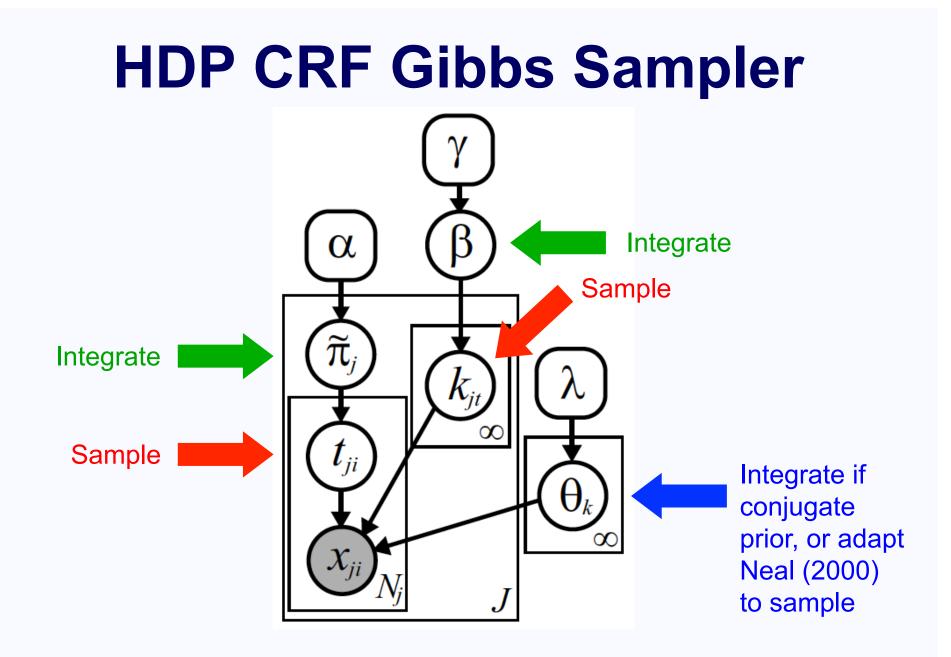
Hierarchical Dirichlet Process

$$G_{0}(\theta) = \sum_{k=1}^{\infty} \beta_{k} \delta(\theta, \theta_{k})$$
$$G_{j}(\theta) = \sum_{t=1}^{\infty} \widetilde{\pi}_{jt} \delta(\theta, \widetilde{\theta}_{jt})$$
$$G_{j}(\theta) = \sum_{k=1}^{\infty} \pi_{jk} \delta(\theta, \theta_{k})$$

 $\beta \sim \operatorname{GEM}(\gamma)$ $\theta_k \sim H(\lambda) \qquad k = 1, 2, \dots$ $\widetilde{\pi}_j \sim \operatorname{GEM}(\alpha)$ $\widetilde{\theta}_{jt} \sim G_0 \qquad t = 1, 2, \dots$ $\pi_{jk} = \sum_{t \mid k_{jt} = k} \widetilde{\pi}_{jt}$

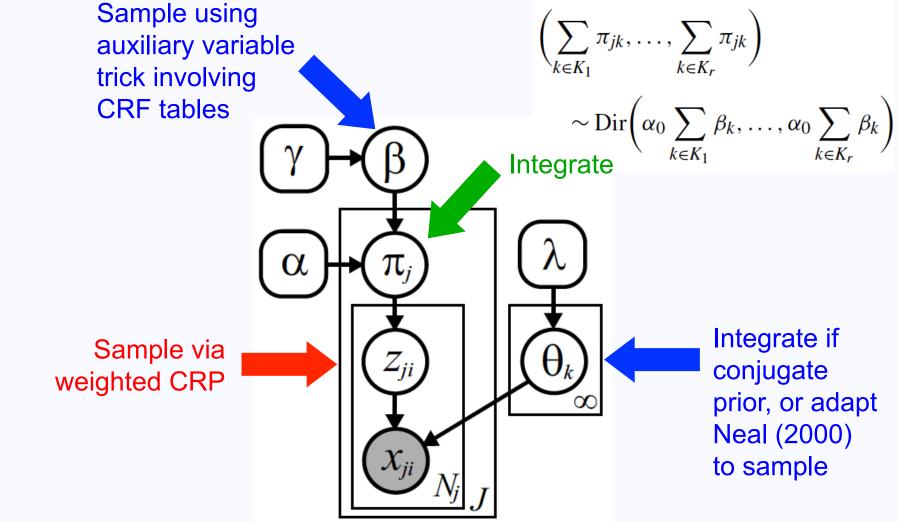
Chinese Restaurant Franchise



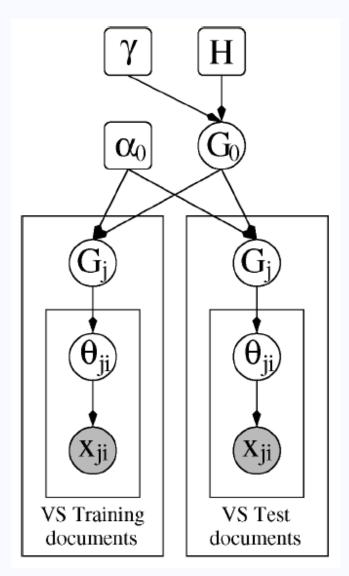


No finite truncation required...

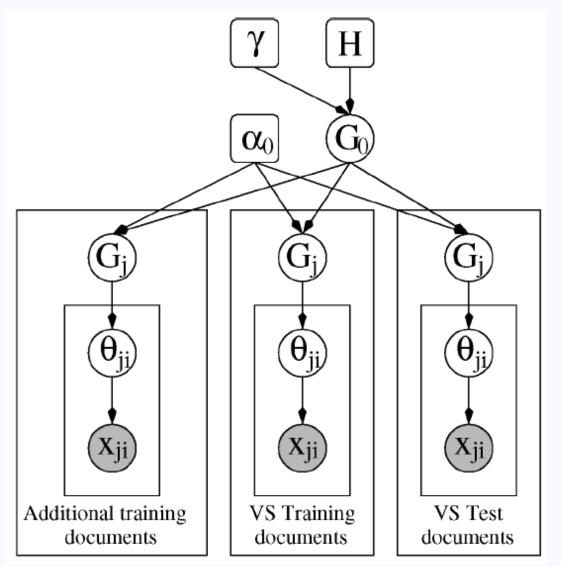
HDP Direct Assignment Sampler



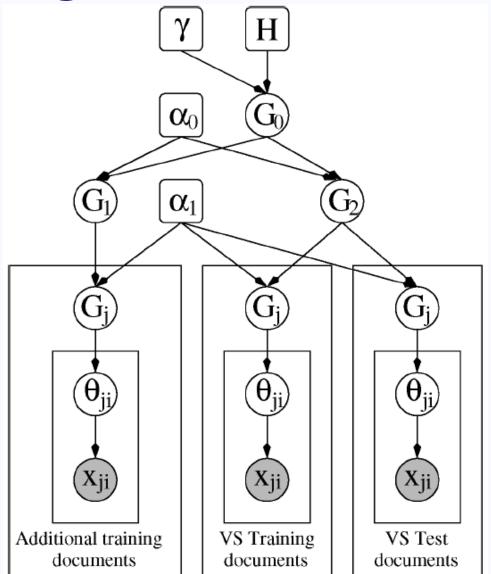
No finite truncation required...



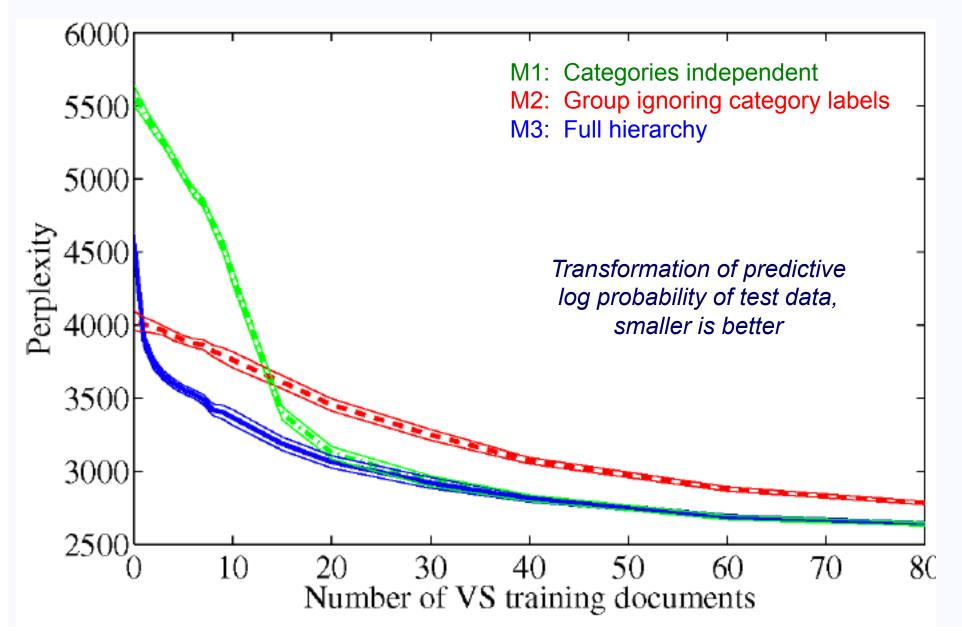
M1: Each category is treated independently



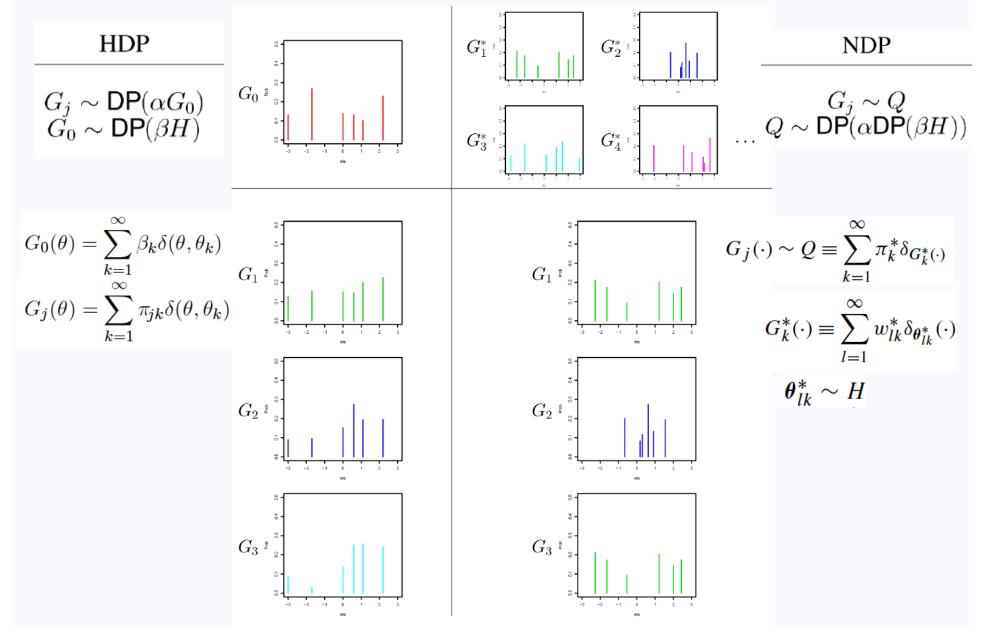
M2: Ignore category labels, treat as one large dataset



M3: Fully hierarchy, documents more similar within than between categories



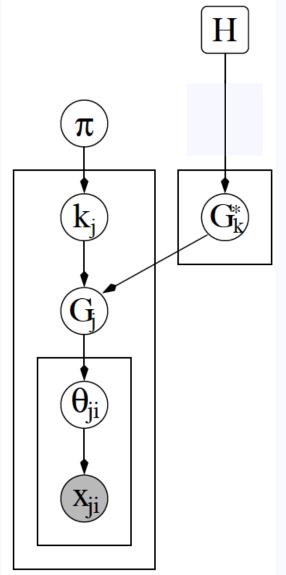
Hierarchical DP vs. Nested DP



The NDP: Simpler than it seems

- 1. Partition your data groups according to a Chinese restaurant process with hyperparameter α
- 2. For each cluster in this partition, independently sample an "infinite" mixture model from a Dirichlet process prior with hyperparameter β
- Treat these clusters as new "super-groups", generate the data i.i.d. from the corresponding DP mixture (independently of other clusters)
 Gives a simple correlation structure:

$$\operatorname{cor}(\boldsymbol{\theta}_{ij}, \boldsymbol{\theta}_{i'j'}) = \begin{cases} \frac{1}{(1+\beta)}, & j = j' \\ \frac{1}{(1+\alpha)(1+\beta)}, & j \neq j' \end{cases}$$



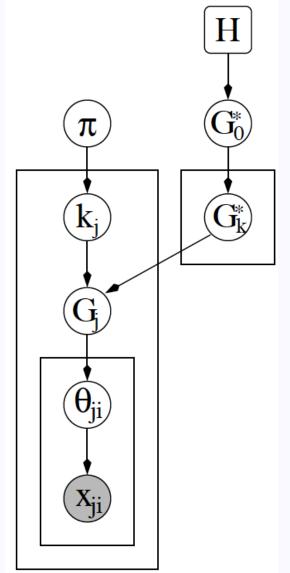
Graph by Teh, 2007

The NDP: Simpler than it seems

- 1. Partition your data groups according to a Chinese restaurant process with hyperparameter α
- 2. For each cluster in this partition, independently sample an "infinite" mixture model from a Dirichlet process prior with hyperparameter β
- Treat these clusters as new "super-groups", generate the data i.i.d. from the corresponding DP mixture (independently of other clusters)
 Gives a simple correlation structure:

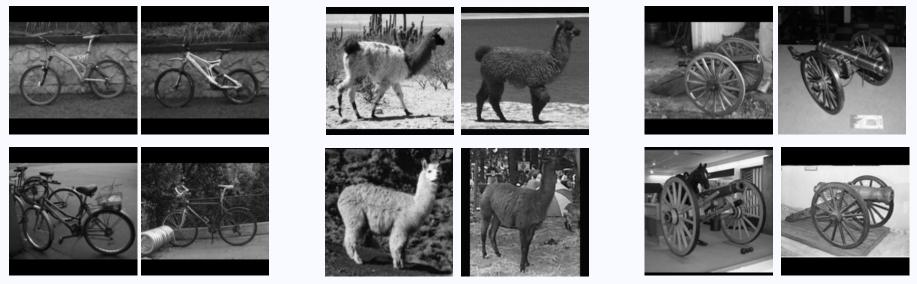
$$\operatorname{cor}(\boldsymbol{\theta}_{ij},\boldsymbol{\theta}_{i'j'}) = \begin{cases} \frac{1}{(1+\beta)}, & j = j' \\ \frac{1}{(1+\alpha)(1+\beta)}, & j \neq j' \end{cases}$$

Hybrid of HDP and NDP allows sharing of parameters among the nested DP's clusters (not directly considered in Rodriguez JASA 2008, but mentioned in comments)



Graph by Teh, 2007

Visual Object Categorization



Bicycles

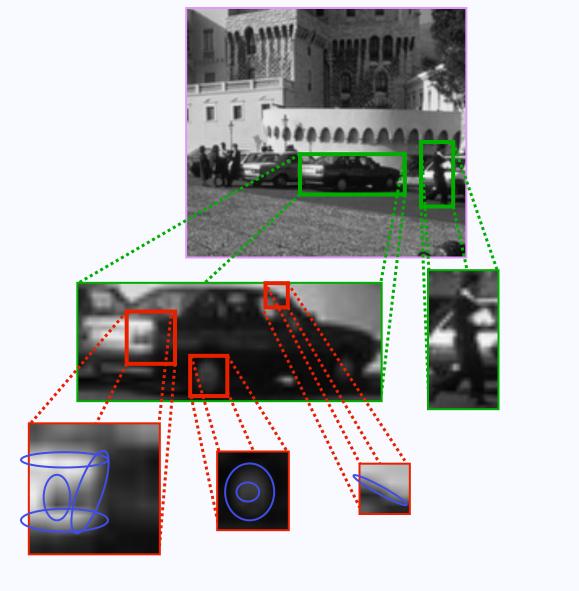
Llamas

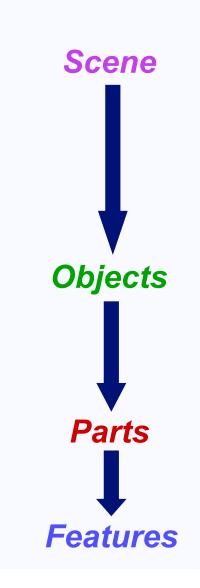
Cannons

GOALS:

- Visually recognize and localize object categories
- Robustly *learn* appearance models from few examples
 - Use hierarchical models to *transfer* knowledge among categories
 - > Nonparametric, *Dirichlet process* prior gives flexibility

Scenes, Objects, and Parts





Outline

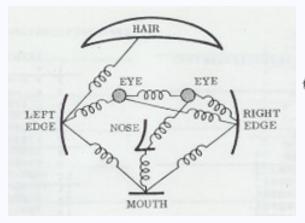
Object Recognition with Shared Parts

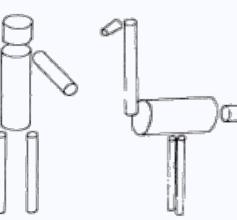
- Learning parts via Dirichlet processes
- Hierarchical DP model for 16 object categories

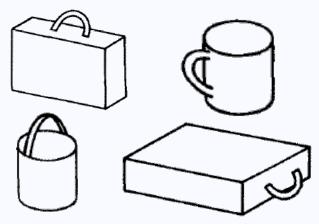
Multiple Object Scenes

- Transformed Dirichlet processes
- Part-based models for visual scenes

Part-Based Models for Objects

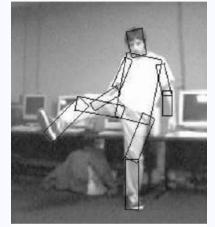




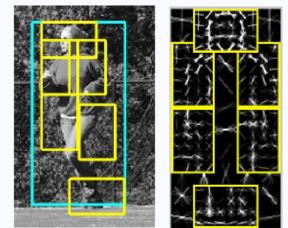


Pictorial Structures *Fischler & Elschlager, 1973* Generalized Cylinders Marr & Nishihara, 1978 **Recognition by Components** *Biederman, 1987*

Constellation Model *Perona, Weber, Welling, Fergus, Fei-Fei, 2000 to ...*

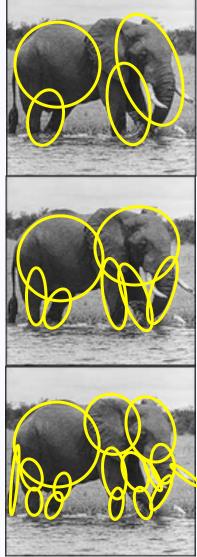


Efficient Matching Felzenszwalb & Huttenlocher, 2005



Discriminative Parts Felzenszwalb, McAllester, Ramanan, 2008 to ...

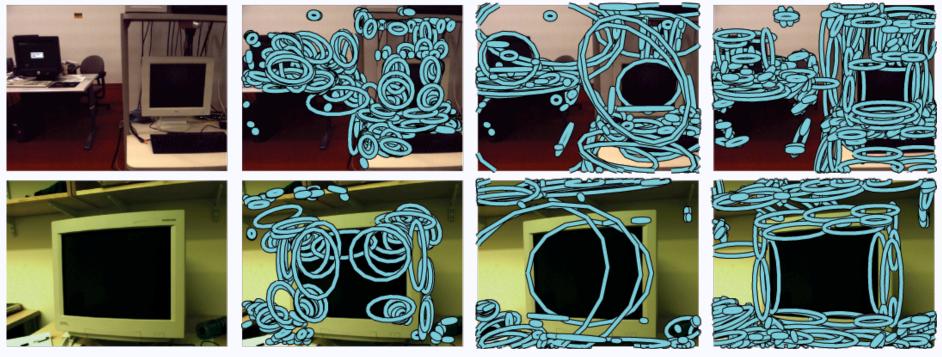
Counting Objects & Parts



How many parts?

How many objects?

From Images to Features



Affinely Adapted Harris Corners

Maximally Stable Extremal Regions

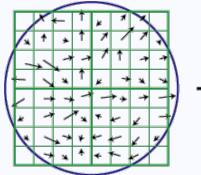
Linked Sequences of Canny Edges

- Some invariance to lighting & pose variations
- Dense, multiscale, over-segmentation of image

A Discrete Feature Vocabulary

SIFT Descriptors

- Normalized histograms of orientation energy
- Compute ~1,000 word dictionary via K-means
- Map each feature to nearest visual word



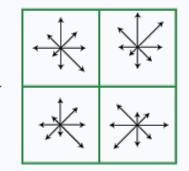


Image gradients

Keypoint descriptor Lowe, IJCV 2004

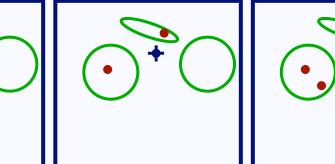
 $w_{ji} \longrightarrow$

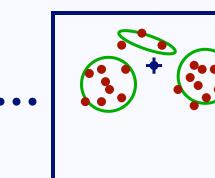
 $v_{ji} \longrightarrow$

appearance offeature *i* in image *j*2D position offeature *i* in image *j*



Generative Model for Objects

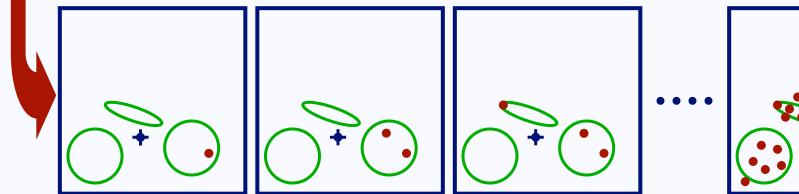


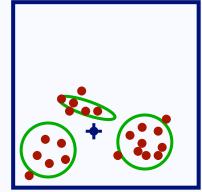


For each image: Sample a reference position

For each feature:

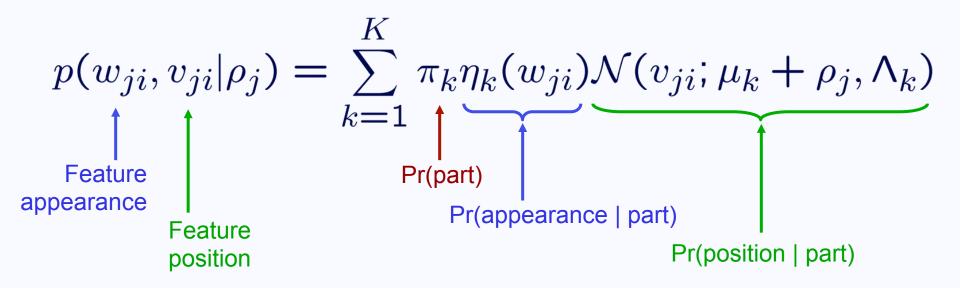
- Randomly choose one part
- Sample from that part's feature distribution



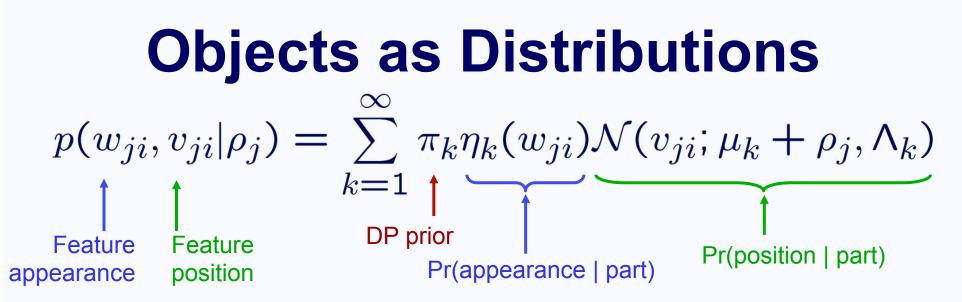


Objects as Mixture Models

• For a fixed reference position, our generative model is equivalent to a finite mixture model:



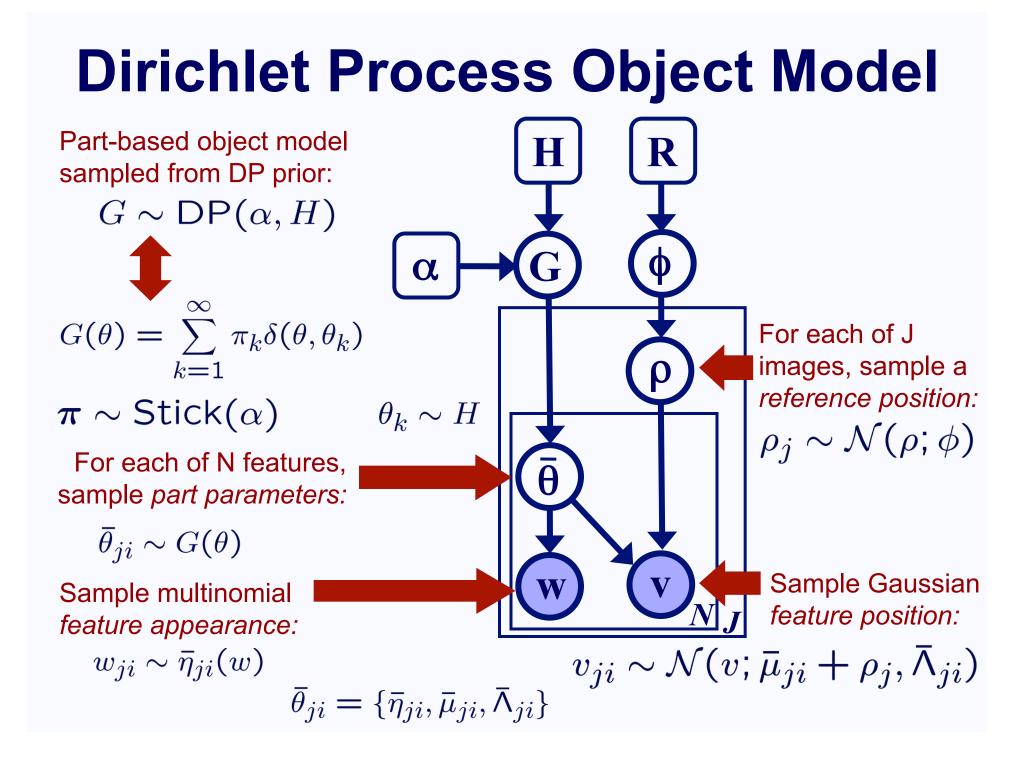
How many parts should we choose?
 Too few reduces model accuracy
 Too many causes overfitting & poor generalization

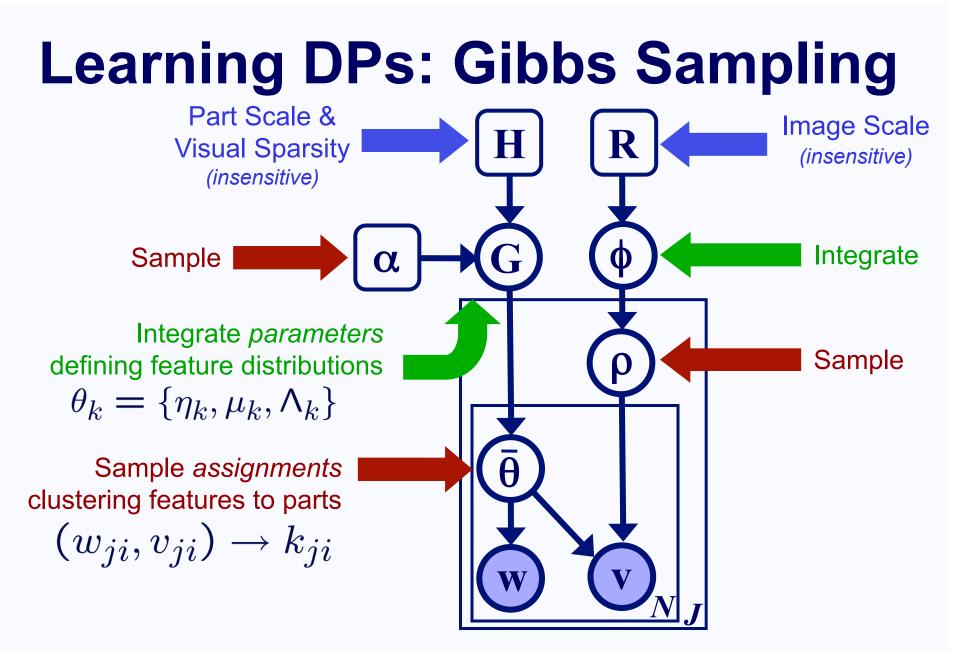


• Parts are defined by *parameters*, which encode distributions on visual features:

$$\theta_k = \{\eta_k, \mu_k, \Lambda_k\}$$

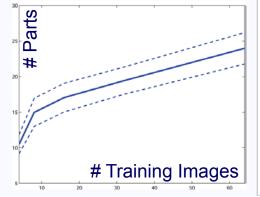
• Objects are defined by *distributions* on the infinitely many potential part parameters: $G(\theta) = \sum_{k=1}^{\infty} \pi_k \delta(\theta, \theta_k) \qquad \pi \sim \text{Stick}(\alpha)$

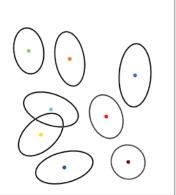


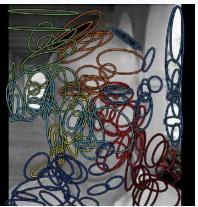


Dirichlet processes have many desirable analytic properties, which lead to efficient *Rao-Blackwellized* learning algorithms

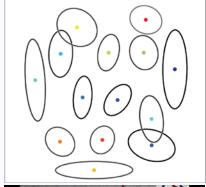
Decomposing Faces into Parts



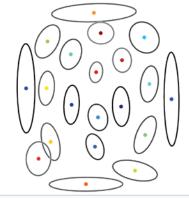


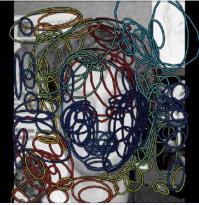


4 Images



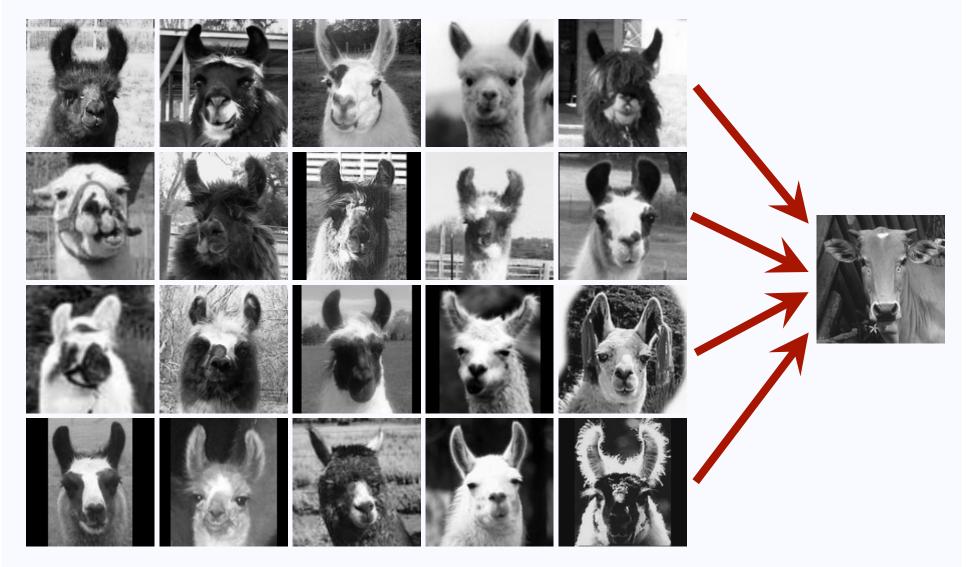
16 Images





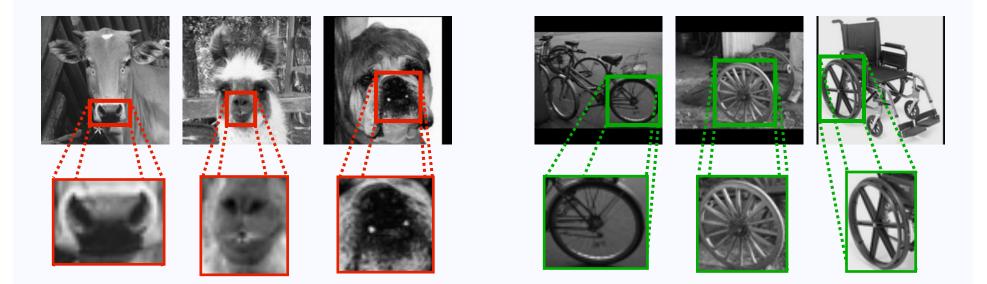
64 Images

Generalizing Across Categories

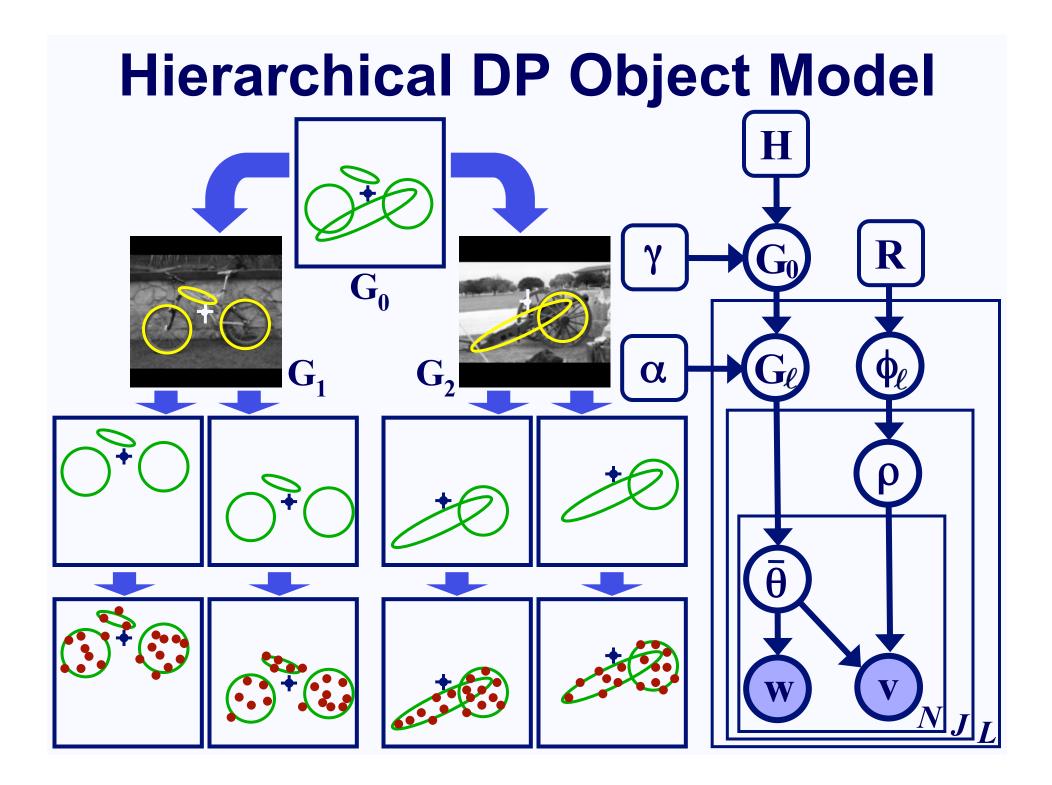


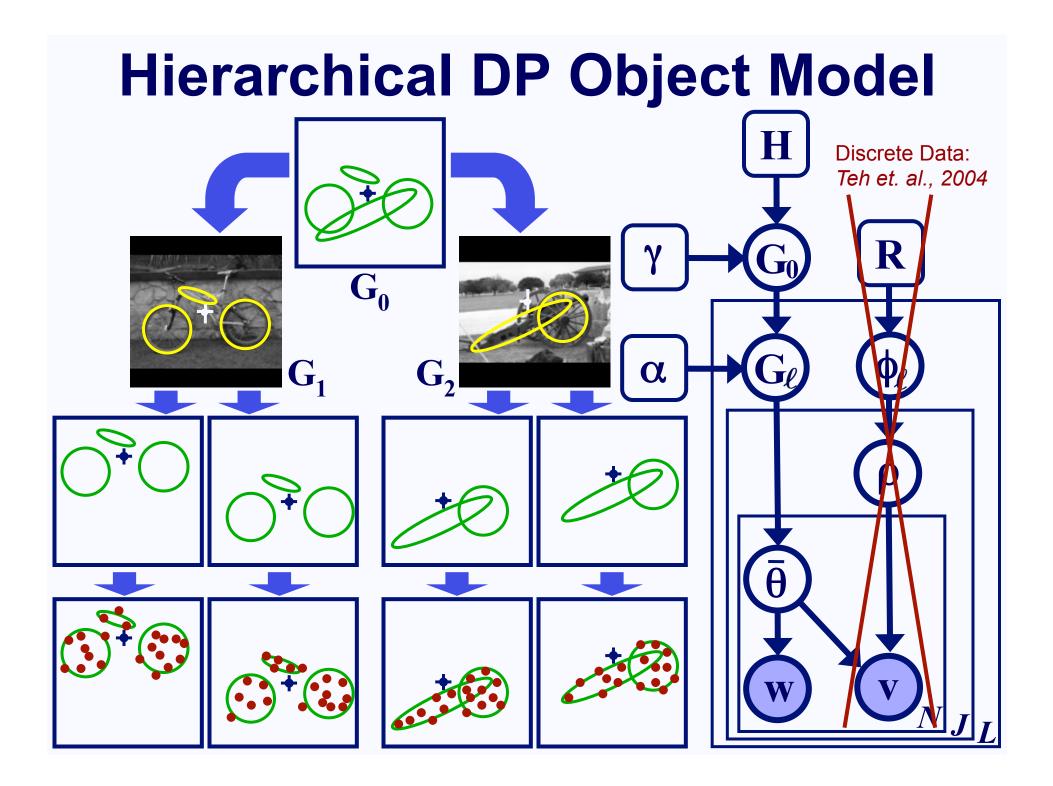
Can we transfer knowledge from one object category to another?

Learning Shared Parts

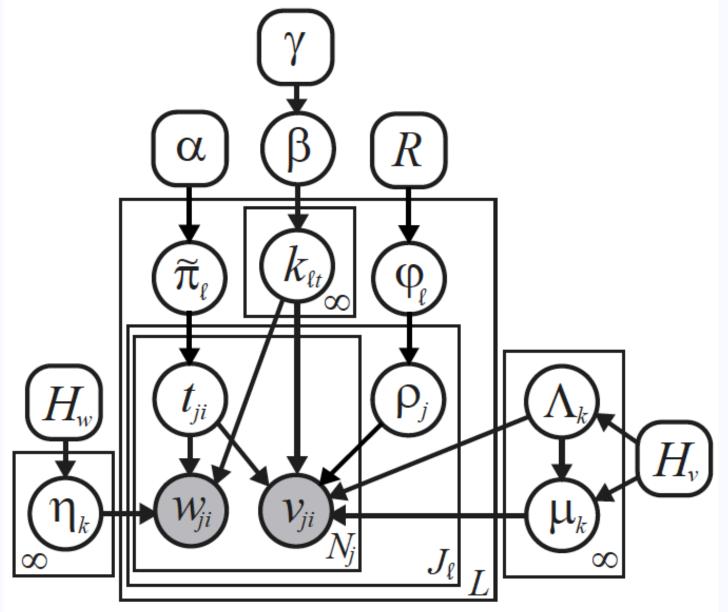


- Objects are often locally similar in appearance
- Discover *parts* shared across categories
 How many total parts should we share?
 How many parts should each category use?

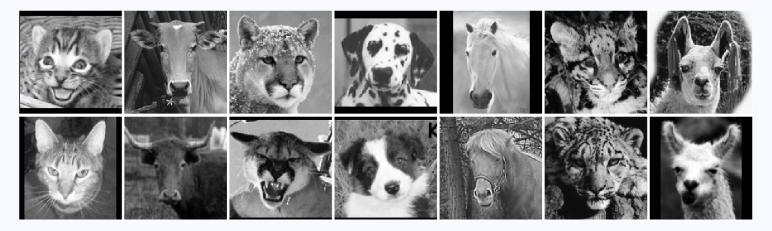


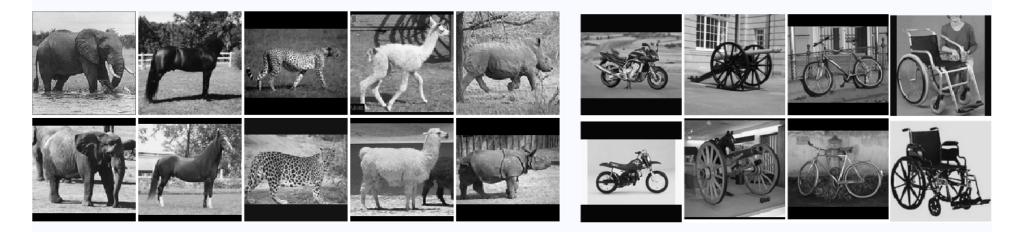


Chinese Restaurant Franchise



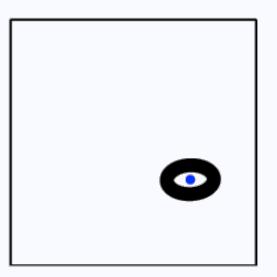
Sharing Parts: 16 Categories





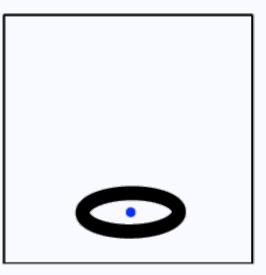
- Caltech 101 Dataset (Li & Perona)
- Horses (Borenstein & Ullman)
- Cat & dog faces (Vidal-Naquet & Ullman)
- Bikes from Graz-02 (Opelt & Pinz)
- Google...

Visualization of Shared Parts



Pr(position | part)

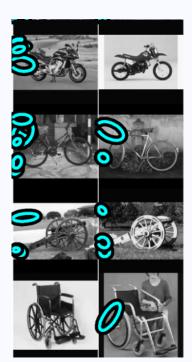
Visualization of Shared Parts

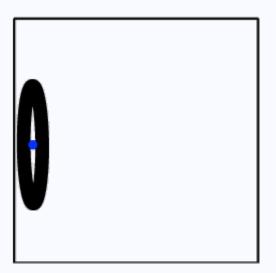


Pr(position | part)

Pr(appearance | part)

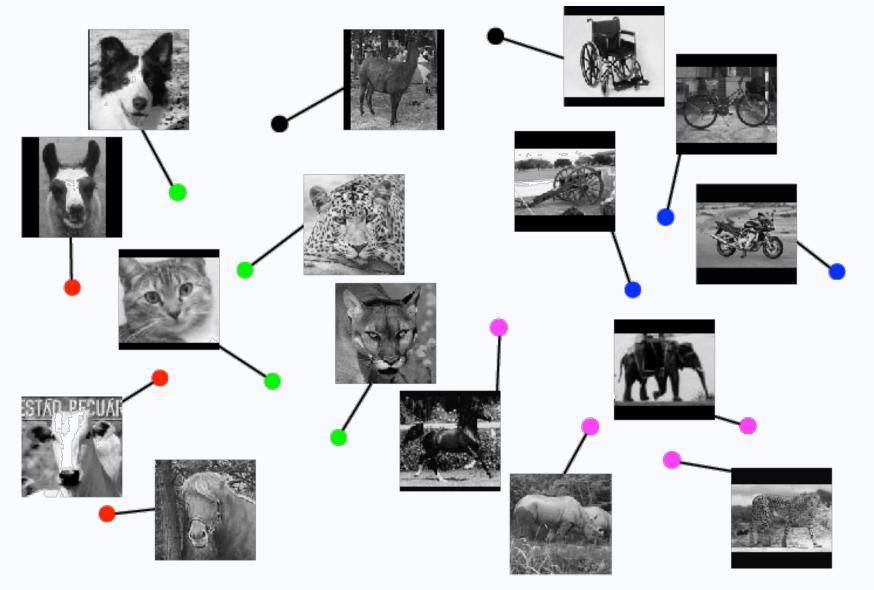
Visualization of Shared Parts





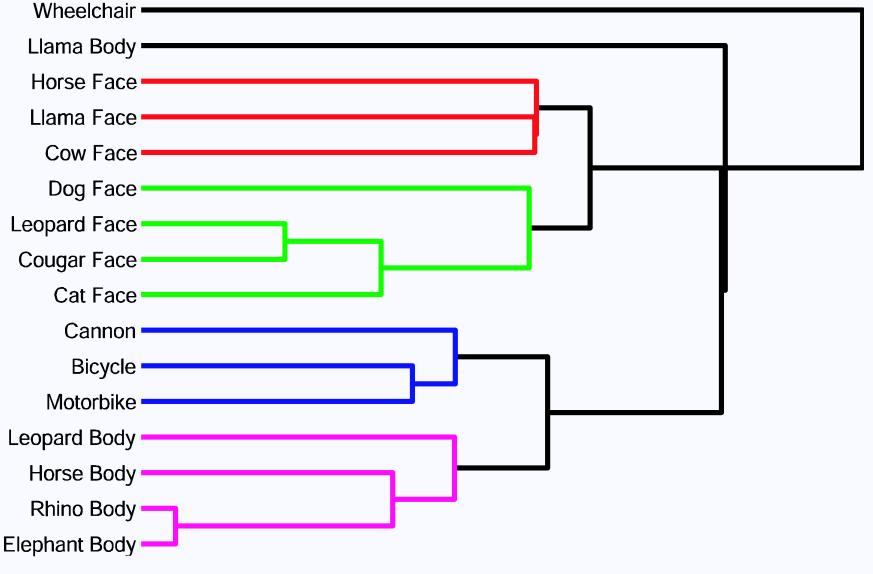
Pr(position | part)

Visualization of Part Densities



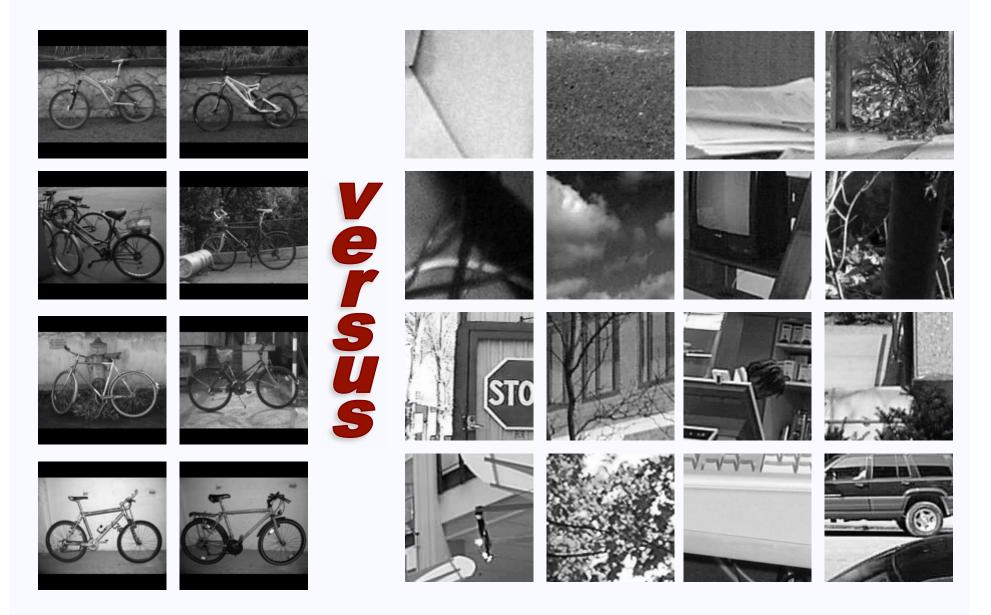
MDS Embedding of Pr(part | object)

Visualization of Part Densities

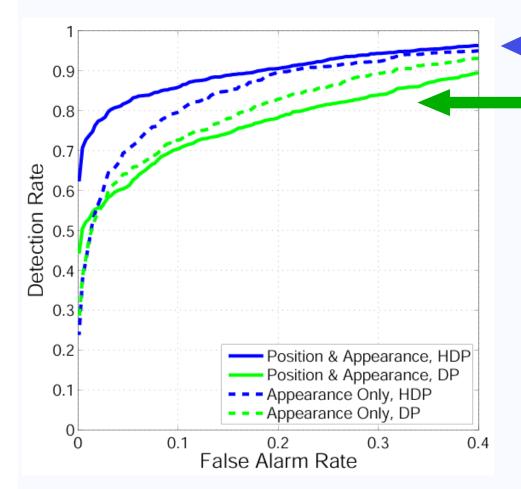


Hierarchical Clustering of Pr(part | object)

Detection Task



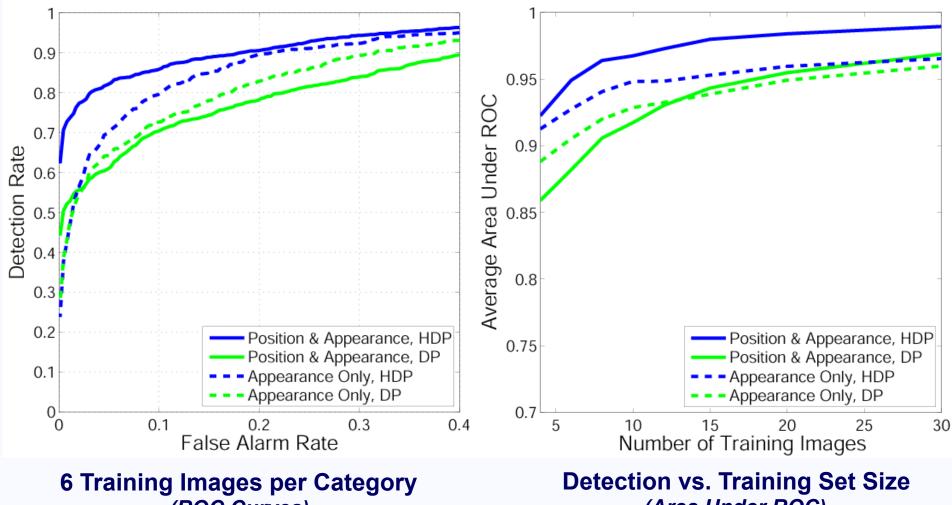
Detection Results



6 Training Images per Category (ROC Curves) Shared Parts more accurate than Unshared Parts

Modeling feature positions *improves shared* detection, but *hurts unshared* detection

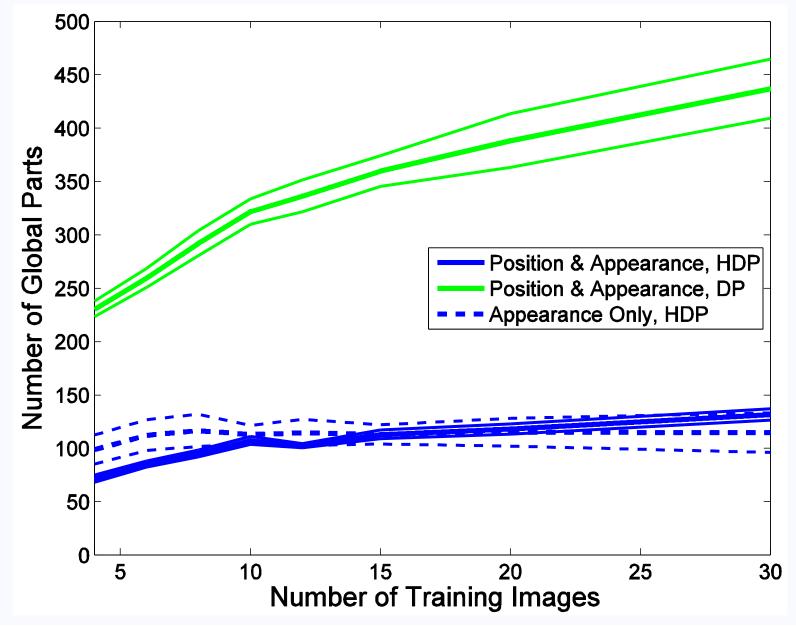
Detection Results



(ROC Curves)

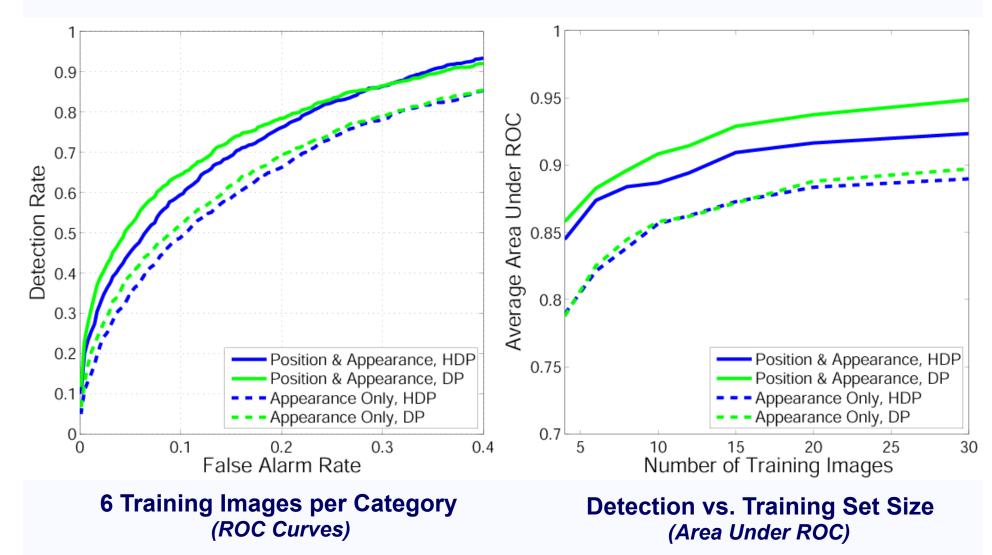
(Area Under ROC)

Sharing Simplifies Models



Recognition Task

Recognition Results



Outline

Object Recognition with Shared Parts

- Learning parts via Dirichlet processes
- Hierarchical DP model for 16 object categories

Multiple Object Scenes

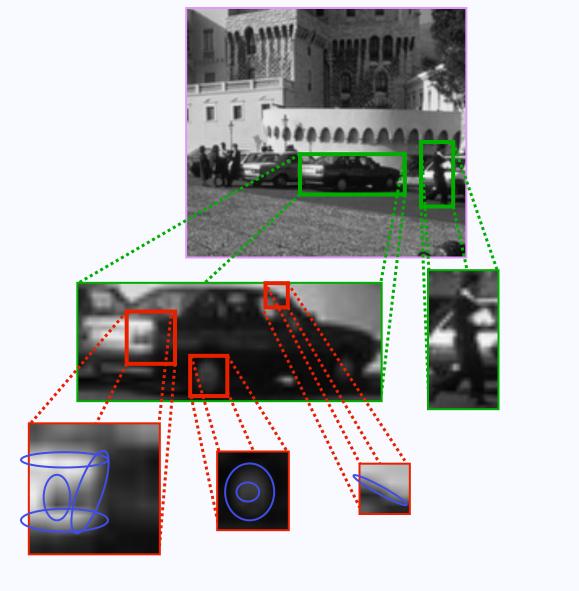
- Transformed Dirichlet processes
- Part-based models for visual scenes

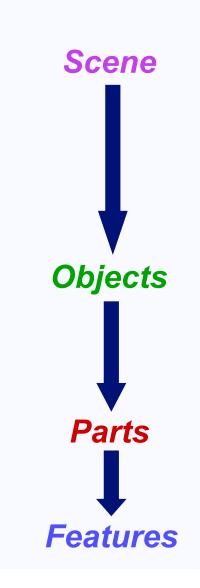
Detecting Objects in Scenes

Sliding Window Approach

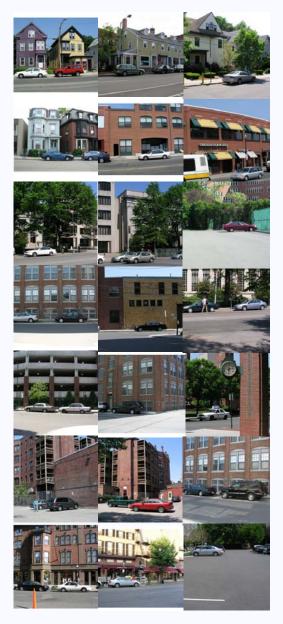
Greedy Feature Extraction Approach

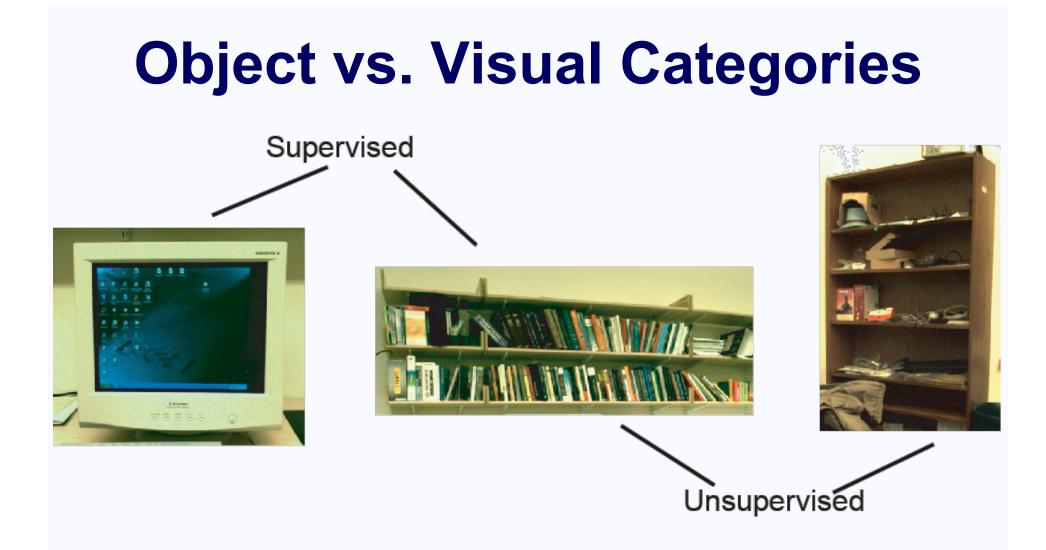
Scenes, Objects, and Parts





Semi-supervised Learning





- Assume training data contains object category labels
- Discover underlying visual categories automatically

Multiple Object Scenes

- How many cars are there?
- Where are those cars in the scene?

Standard dependent Dirichlet process models (Gelfand et. al., 2005) inappropriate

Spatial Transformations

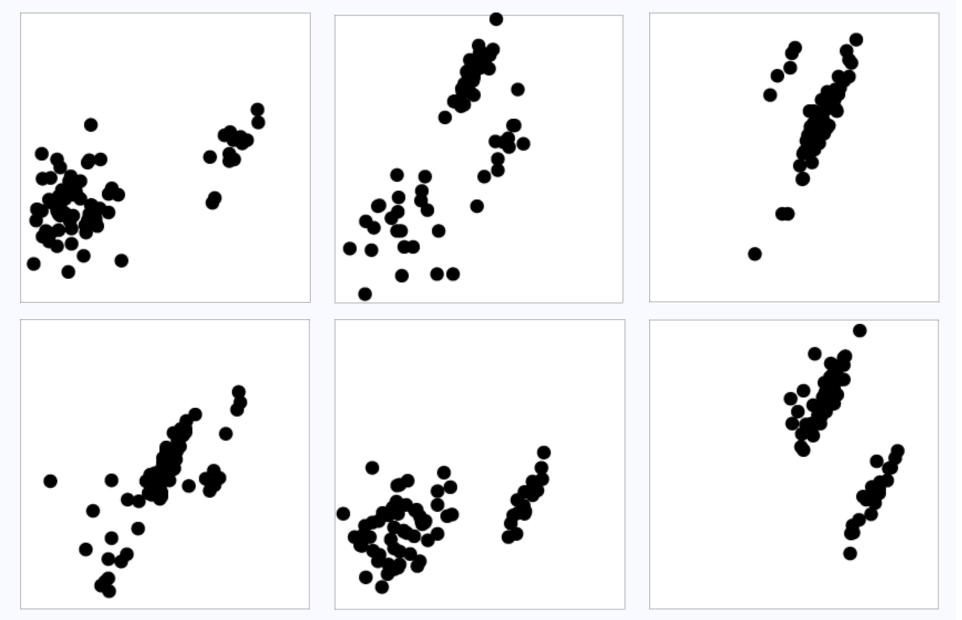
- Let global DP clusters model objects in a *canonical* coordinate frame
- Generate images via a random set of transformations:

$$\tau((\mu, \Lambda); \rho) = (\mu + \rho, \Lambda)$$
Parameterized family Shift cluster from canonic

Parameterized family of transformations Shift cluster from canonical coordinate frame to object location in a given image

Layered Motion Models (Wang & Adelson, Jojic & Frey) Nonparametric Transformation Densities (Learned-Miller & Viola)

A Toy World: Bars & Blobs



Transformed Dirichlet Process H () **Mixture Transformations Parameters** G₀ R α igodoligodoligleG, \mathbf{G}_{1} G₃ Ā ิด ×, N

Transformed Dirichlet Process

H **Mixture Transformations Parameters** α

Global mixture over parameters & transformations (translations):

$$G_{0}(\theta, \rho) = \sum_{k=1}^{\infty} \beta_{k} \delta(\theta, \theta_{k}) q(\rho \mid \phi_{k})$$

 $\boldsymbol{\beta} \sim \mathsf{Stick}(\gamma) \quad \boldsymbol{\theta}_k \sim H \quad \boldsymbol{\phi}_k \sim R$

Images generated from a set of transformed global densities: $G_i \sim DP(\alpha, G_0)$

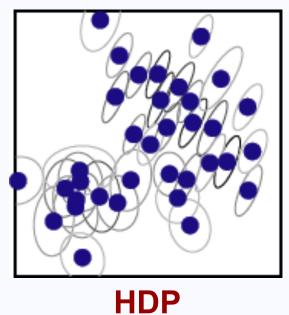
$$G_{j}(\theta,\rho) = \sum_{k=1}^{\infty} \pi_{jk} \delta(\theta,\theta_{k}) \left[\sum_{\ell=1}^{\infty} \omega_{jk\ell} \delta(\rho,\rho_{jk\ell}) \right]$$

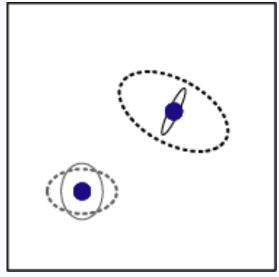
 $oldsymbol{\omega}_{jk}\sim {\sf Stick}(lphaeta_k)$

Sample each feature independently:

$$\overline{\theta}_{ji}, \overline{\rho}_{ji}) \sim G_j(\theta, \rho)$$
$$x_{ji} \sim f\left(x \mid \tau(\overline{\theta}_{ji}; \overline{\rho}_{ji})\right)$$

Importance of Transformations

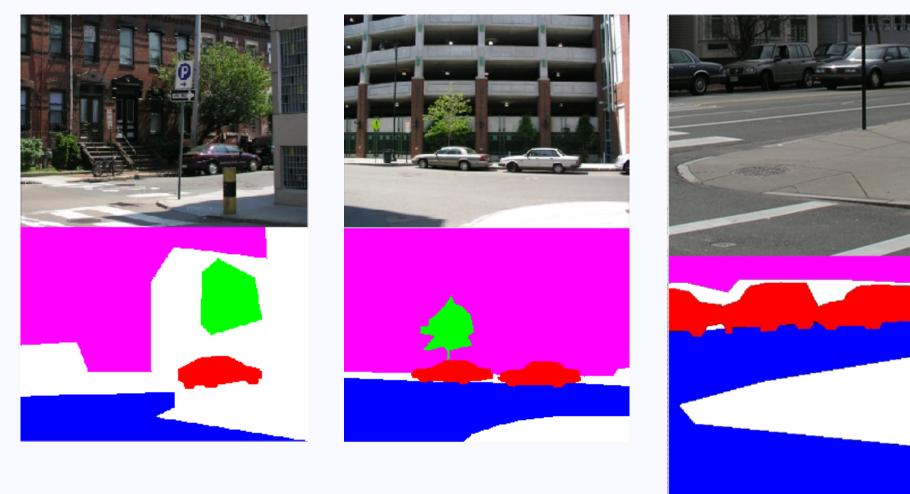




TDP



Counting & Locating Objects

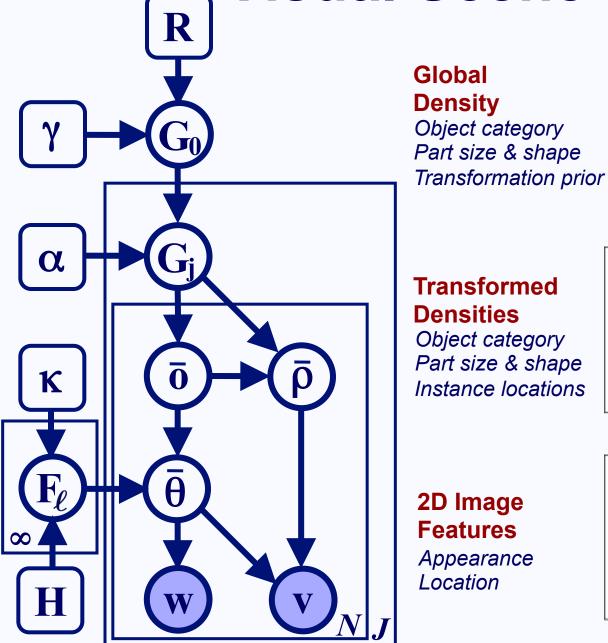


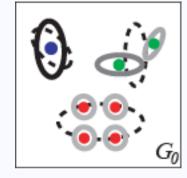
- How many cars are there?
- Where are those cars in the scene?

Dirichlet Processes

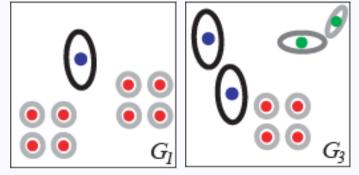
Transformations

Visual Scene TDP

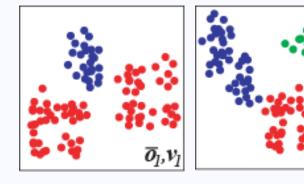




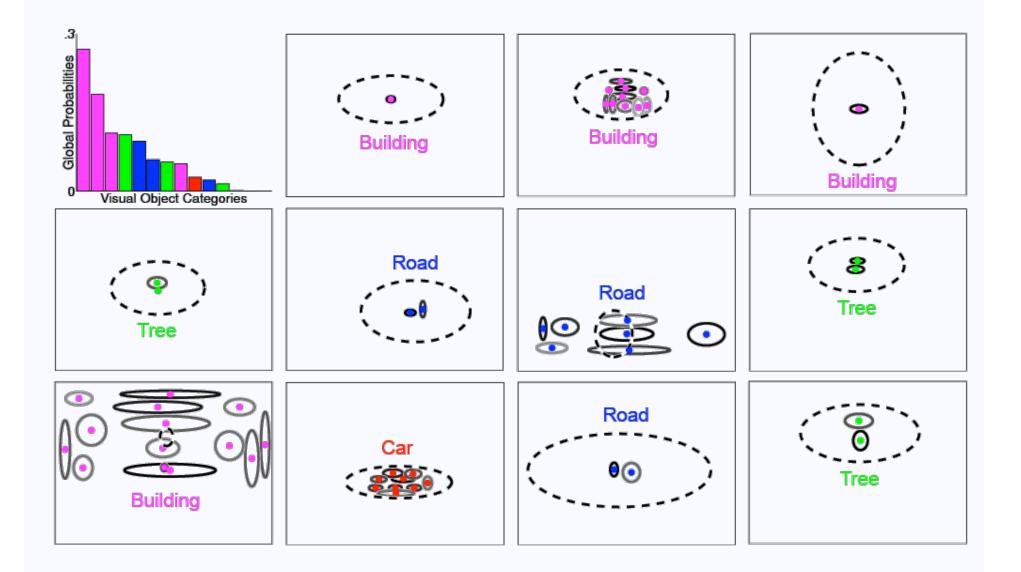
Transformed Densities Object category Part size & shape Instance locations



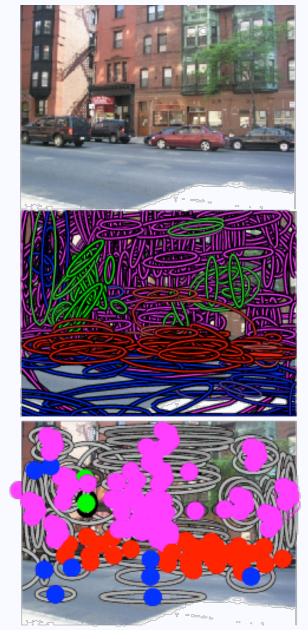
2D Image Features Appearance Location

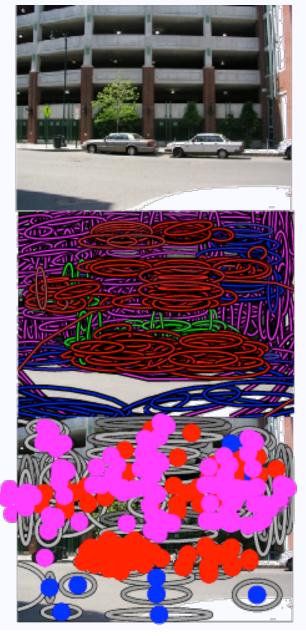


Street Scene Visual Categories

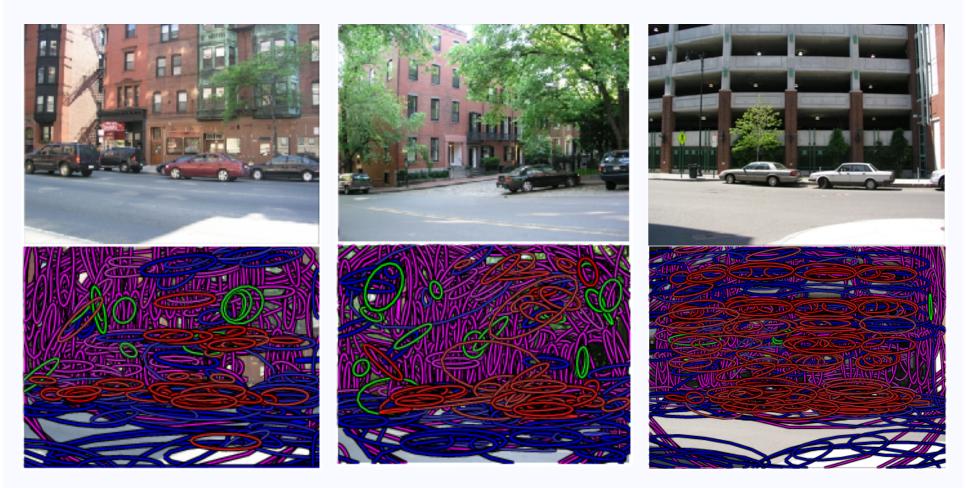


Street Scene Segmentations





Appearance Only



- "Bag of features" model, ignores feature positions
- Inferior segmentations, cannot count objects

Segmentation Performance

