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Convexity & Jensen s Inequality 
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Lower Bounds on Marginal Likelihood 
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Expectation Maximization Algorithm 
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E Step:  Optimize 
distribution on hidden 
variables given parameters 

M Step:  Optimize  
parameters given 
distribution on  
hidden variables 



EM: A Sequence of Lower Bounds 
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θold θnew

L (q, θ)

ln p(X|θ)



Fitting Gaussian Mixtures 
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Complete Data Labeled 
by True Cluster Assignments 

Incomplete Data: 
Points to be Clustered 



Posterior Assignment Probabilities 
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Posterior Probabilities of 
Assignment to Each Cluster 

Incomplete Data: 
Points to be Clustered 
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EM Algorithm 
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EM Algorithm 
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EM Algorithm 

C. Bishop, Pattern Recognition & Machine Learning 

(c)

L = 1

!2 0 2

!2

0

2



EM Algorithm 
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EM Algorithm 
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EM Algorithm 
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Pairwise Markov Random Fields 

•! Product of arbitrary positive clique potential functions 

•! Guaranteed Markov with respect to corresponding graph  

set of      nodes  

set of edges             connecting nodes   
normalization constant (partition function)   



Markov Chain Factorizations 



Energy Functions 

Interpretation and terminology from statistical physics 



Approximate Inference Framework 

•!Choose a family of approximating distributions 
which is tractable.  The simplest example: 

•!Define a distance to measure the quality of different 
approximations.  Two possibilities: 

•!Find the approximation minimizing this distance 



Fully Factored Approximations 

•!Trivially minimized  by setting 

•!Doesn’t provide a computational method! 

Marginal 
Entropies 

Joint 
Entropy 



Variational Approximations 

(Multiply by one) 

(Jensen’s 
inequality) 

•!Minimizing KL divergence maximizes a lower 
bound on the data likelihood 



Free Energies 

Negative 
Entropy 

Average 
Energy 

Gibbs Free 
Energy 

Normalizat
ion 

•!Free energies equivalent to KL divergence, 
up to a normalization constant 



Mean Field Free Energy 



Mean Field Equations 

•!Add Lagrange multipliers to enforce 

•!Taking derivatives and simplifying, we 
find a set of fixed point equations: 

•!Updating one marginal at a time gives 
convergent coordinate descent 



Mean Field Message Passing 

Want products of 
messages to be simple 

Want expectations of log 
potential functions to be simple 



Exponential Families 
•! Natural or canonical parameters determine log-linear 

combination of sufficient statistics: 

•! Log partition function normalizes to produce valid 
probability distribution: 



Directed Mean Field 

•! Can derive updates using exponential family form of the 
conditional distribution of each variable, given its parents 

•! Can also just take derivatives, collect terms, simplify! 

Variational Message 
Passing, Winn & 

Bishop, JMLR 2005 



Structured Mean Field 

Original Graph Naïve Mean Field Structured 
Mean Field 

•!Any subgraph for which inference is tractable 
leads to a mean field style approximation for which 
the update equations are tractable 


