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Motivation

® Gibbs sampling is not efficient

® Sampling requires careful monitoring of the
convergence of the Markov chain

!

Variational Bayesian methods




Motivation

Variational methods:

* A good approximation of the DP
* Deterministic

e Handles “modern’ datasets faster than Gibbs
Sampling




TSB and FSD

TSB: Truncated Stick Breaking process with standard
variational bayesian model

FSD: Finite Symmetric Dirichlet representation with
standard variational bayesian model




| - TSB

TSB: Truncated Stick Breaking process with standard
variational bayesian model
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X are data points, z are the assignments, v are the stick breaking weighs, and 7}
is cluster parameters




Il - FSD
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™ ~ D(m; %, 7¢) Mixture weights following a symmetric dirichelet

+

assume a large number of clusters K

[Ishwaran and Zarepour, 2002]
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Marginalizing the
mixture of weights

P(X v, 1) = P(X,z,mn) =
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TSB FSD
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Collapsed model
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Marginalizing the
mixture of weights
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and N>; = N; + N-;. For FSD we find instead,




Lower bound
formulation

log marginal likelihood
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P(X,z,0)
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lower bound
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where @ is either {n, v}, {n, 7} or {n}
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Lower bound
formulation
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Update equations
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Optimal labels re-

deri
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® Permutation of cluster labels change the
probability, therefore, an optimal reordering
of the labels will maximize that probability




Big picture

Stick breaking
|

4 )

0-Tsp Ml 7 7

n# of cluster large +
weights ~ symetric dirichlet




Experiments

Expl:

* Synthetic data from a mixture of 10 Gaussians in 16
dimensions with a separation coefficient ¢ = 2

* 30 independently sampled training/testing data, 1000 test
datapoints

Exp Il:

* MNIST dataset 28*28 images reduced to 50 dimensions
with a PCA.

* 30 splits of the data, 5000 training and 10,000 testing.




-30.5 T T T
-51
-51.5
-52
-52.5

-53

log prob. test data / N
diff. log prob. test data / N

-53.5

-54

200 400 600 800 1000

Figure 2: Average log probability per data-point for test data as a Figure 3: Relative average log probability per data-point for test
function of V. data as a function of N.
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Figure 4. Average log probability per data-point for test dataasa  Figure 5: Relative average log probability per data-point for test
function of 7" (for TSB methods) or K (for FSD methods). data as a function of 7" (for TSB methods) or K (for FSD methods).
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Conclusion

* There is little difference between TSB and FSD.

* Label re-ordering is important for the stick breaking
representation (especially when we have no clue
about how many clusters we may have).

* Variational bayesian algorithms are much more
efficient computationally than Gibbs sampling, with
almost no loss in accuracy.




