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Hierarchical Clustering

Classic algorithm

Agglomerative, bottom
up clustering

Initialize with each data
instance as its own

cluster.
Progressively merge | JW L % L4

the mOSt Simllar pairs 2 7 8 3 4 80 5 6 1 12 13 14 15 18
creating a binary tree



Problems

* No probabilistic model of the data :
— Difficult to deal with new data instances
— Can’t be compared to or combined with other probabilistic models
— No notion of how good a particular clustering of the data is

e Correct distance metric?

 More importantly, need to specify distance between groups
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Problems

Merge which pair of clusters?
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Bayesian Hierarchical Clustering

* Notation .
3 |

—D = {x1, .. ,x")

— D; c D, data at Ty

leaves of tree T; —

@){

1 D, Ds




Tree-Consistent Partitions

o

1 2 3 4

*Consider the above tree and all 15 possible partitions of {1,2,3,4}:
(1)(2)(3)(4), (12)(3)(4), (13)(2)(4), (14)(2)(3), (23)(1)(4),
(24)(1)(3), (34)(1)(2), (12)(34), (13)(24), (14)(23),
(123)(4), (124)3), (134)(2), (234)(1), (1234)

*(12)(3)(4)and (12 3)(4) are tree-consistent partitions

* (1)(2 3)(4) and (1 3)(2 4) are not tree-consistent partitions



Bayesian Hierarchical Clustering

* Data generated from a Dirichlet
Process Mixture.

* Similarity is now measured
through a statistical test.

* For each candidate merge
compare two hypotheses:

— H, : all data in D;, generated
from the same component

— H, : data in D}, came from some
other clustering consistent with
the sub trees T; and Tj.




Computing the Marginal Likelihood for
H,

e Given that our model is a DPM we can
compute

— P(Dk ‘H{‘) - data at tree T;, was generated from
the same cluster.

~ P(Di|HY) = | p(Dy10)p(618)d6
— Easy to compute if the model has conjugacy.



Marginal Likelihood for the alternative
hypothesis

o P(Dk ‘Hé‘) - D, was generated from two or

more components defining partitions
consistent with treesT; and T;

— P(Dy|HE) = P(D;IT)P(D;|T))

— P(Dy|Ty) = mxp(Di|H) + (1 — 7 ) P(Dy | HY)
o T = p(Hp)



Algorithm Details

input: data D = {x'V . x"} model p(x|9),
prior p(8|3)
initialize: number of clusters ¢ = n, and
Di={x"lfori=1...n
while ¢ > 1 do
Find the pair D; and D; with the highest
probability of the merged hypothesis:

_ 71p( D ‘Hi )
p('D I |T; }

Merge D), «— D; UD;, 1} — (13,15)
Delete D; and D, ¢+ c—1

end while

output: Bayesian mixture model where each

tree node is a mixture component

The tree can be cut at points where r, < 0.5




Computing the Prior for H{‘

* 1, is the relative mass of the partition where
all points are in one cluster vs all other
partitions consistent with the subtrees, in a
Dirichlet process mixture model

* Can be computed bottom up

[nitialise each leafitohave d; = o, m; = 1
for each internal node & do
dr = ol'(ng) + dieft, dright,

al (1

mE = i

end for




Marginal Likelihood of a Dirchlet
Process Mixture

 Marginal Likelihood :

p(Dla, 3) = Zp vla)p(Dlv, 3)

* VvV = {Vl, ...VN}
* From the CRP (distribution over partitions) we
have

nj 1 .
T ifl<m
P(ff_m-' = f\b’h 19, ..., f-f’N_1) = { N _&J“:“ N

N—i1ta otherwise




Marginal Likelihood of a Dirchlet
Process Mixture

p(vla) = p(vr)p(valv)p(vs|ve, v1)...

Lemma 1: p(?.—.)gf}:z . { } -



Marginal Likelihood of Tree Consistent
Partitions

di.I' ()

Tln, +ﬂljp{9k Tx) = p(Dk)

* Lower bounds the true DPM marginal
likelihood



Combinatorial Lower Bounds

 BHC forms a lower bound for the marginal likelihood of an
infinite mixture model by efficiently summing over an
exponentially large subset of all partitions.

* Ideais to deterministically sum over partitions with high
probability, thereby accounting for most of the mass.



Experimental Results

* Toy Example
* UCI Datasets
* Newsgroup Clustering
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Results: a Toy Example

Data Set
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a Toy Example

Results
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Predicting New Data Points

10

©

[o.]

~l

o

(3,1

N

w

N




Results: Purity Scores

[DaTa SET SINGLE LINKAGE COMPLETE LINKACE  AVERAGE LINKAGE BHC

SYNTHETIC 0,590 + 0.033 0.634 + 0.024 0,668 + 0.040 (L5825 + 0.025
NEWSGROUPS 0.275 + 0.001 0.315 + 0.00% 0,282 + 0,002 (0,465 + 0.016
SPAMEBASE 05898 + 0,017 0699 + 0017 0668 + 0,019 (L7258 + (0.0209
aDcITs 0.545 +— 0.015 0.654 +0.013 0.742 + 0,018 0.8507 4+ 0,022
10D1G1TS 0,224 + 0.004 (0,209 + 0,006 0,342 + 0,005 (0,393 4+ 0015
(GLARS 0,478 + 0,009 0. 476 + 0,009 0,491 + 0.009 467 0011

Purity is a measure of how well the hierarchical tree structure is correlated with

the labels of the known classes.

l.et T be a tree with leaves 1,....n and s

each class are contained in some pure snbtree,

cn be the
lnown discrete class labels for the data points at the leaves. Piclk
a leaf ¥ uniformly at random; pick another leaf 7 uniformly in
the same class, i.e. o = ¢y, Find the smallest subtree containing
¢ and §. Measure the fraction of leaves in that subtree which are
in the same class (e¢). The expected value of this fraction is the
dendrogram purity., and can be computed exactly in a bottom
up recursion on the dendrogram. The purity is 1 iff all leaves in



4 Newsgroups Results

Quebec Car
Jet Easeball
Boston Engina

Pitchear
Boston
Ball

Baseball = Space
Pitch MASA
Hit i Cirbit

Wehicle
Deaalar
Diriver

Fligure 5. Top level structure, of BHC (left) vs. Average Linkage
HC', for the newsgroup dataset. 1T'he 3 words shown at each
node have the highest mutual information between the cluster
of documents at that node versus its sibling. and occur with
higher frequency in that cluster. 'I'he number of documents at

each cluster is also given.

800 examples, 50 attributes: rec.sport.baseball, rec.sports.hockey, rec.autos, sci.space



Newsgroups: Average Linkage HC
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Newsgroups: Bayesian HC




Comparison with Mean Field Lower
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Issues and Opportunities

* Greedy algorithm:
— The algorithm may not find the globally optimal tree

* No tree uncertainty:

— The algorithm finds a single tree, rather than a distribution over
plausible trees

« O(n?) complexity for building tree
* Extend inference algorithm to more sophisticated models.



