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Hierarchical Clustering 

• Classic algorithm  

• Agglomerative, bottom 
up clustering 

• Initialize with each data 
instance as its own 
cluster. 

• Progressively  merge 
the most similar pairs 
creating a binary tree 

 

 

 



Problems 

• No probabilistic model of the data : 
– Difficult to deal with new data instances 

– Can’t be compared to or combined with other probabilistic models 

– No notion of how good a particular clustering of the data is 

 

• Correct distance metric?  

 

• More  importantly, need to specify distance between groups 
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Bayesian Hierarchical Clustering 

• Notation 

 

– 𝐷 =  * 𝑥1, … , 𝑥𝑛+ 

– 𝐷𝑖 ⊂ 𝐷, data at  

    leaves of tree 𝑇𝑖 
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Tree-Consistent Partitions  

•Consider the above tree and all 15 possible partitions of {1,2,3,4}:  

   (1)(2)(3)(4),  (1 2)(3)(4),   (1 3)(2)(4),  (1 4)(2)(3),   (2 3)(1)(4),  

   (2 4)(1)(3),   (3 4)(1)(2),   (1 2)(3 4),   (1 3)(2 4),     (1 4)(2 3),   

   (1 2 3)(4),     (1 2 4)(3),    (1 3 4)(2),   (2 3 4)(1),     (1 2 3 4)  

• (1 2) (3) (4) and (1 2 3) (4) are tree-consistent partitions 

• (1)(2 3)(4) and (1 3)(2 4) are not tree-consistent partitions 
 

 



Bayesian Hierarchical Clustering 

• Data generated from a Dirichlet 
Process Mixture. 

• Similarity is now measured 
through a statistical test. 

• For each candidate merge 
compare two hypotheses: 
– 𝐻1 : all data in 𝐷𝑘 generated 

from the same component 
– 𝐻2 : data in 𝐷𝑘 came from some 

other clustering consistent with 
the sub trees 𝑇𝑖 𝑎𝑛𝑑 𝑇𝑗. 
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Computing the Marginal Likelihood for 
𝐻1 

• Given that our model is a DPM we can 
compute 

– 𝑃 𝐷𝑘 𝐻1
𝑘  -  data at tree 𝑇𝑘 was generated from 

the same cluster. 

– 𝑃 𝐷𝑘 𝐻1
𝑘 = ∫ 𝑝 𝐷𝑘 𝜃 𝑝 𝜃 𝛽 𝑑𝜃 

– Easy to compute if the model has conjugacy. 



Marginal Likelihood for the alternative 
hypothesis 

• 𝑃 𝐷𝑘 𝐻2
𝑘  -  𝐷𝑘was generated from two or 

more components defining partitions 
consistent with trees 𝑇𝑖  𝑎𝑛𝑑 𝑇𝑗  

– 𝑃 𝐷𝑘 𝐻2
𝑘 = 𝑃 𝐷𝑖 𝑇𝑖 𝑃 𝐷𝑗 𝑇𝑗)  

 

– 𝑃 𝐷𝑘 𝑇𝑘 = 𝜋𝑘𝑝 𝐷𝑘 𝐻𝑘
1 + 1 − 𝜋𝑘 𝑃 𝐷𝑘 𝐻2

𝑘   

• 𝜋𝑘 = 𝑝(𝐻𝑘
1) 

   



Algorithm Details 
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Computing the Prior for 𝐻1
𝑘 

• 𝜋𝑘  is the relative mass of the partition where 
all points are in one cluster vs all other 
partitions consistent with the subtrees, in a 
Dirichlet process mixture model 

• Can be computed bottom up 



Marginal Likelihood of a Dirchlet 
Process Mixture 

• Marginal Likelihood : 

 

 

• 𝜈 = *𝜈1, … 𝜈𝑁+ 

• From the CRP (distribution over partitions) we 
have 

 

 



Marginal Likelihood of a Dirchlet 
Process Mixture 

Lemma 1: 



Marginal Likelihood of Tree Consistent 
Partitions 

 

 

 

 

 

 

• Lower bounds the true DPM marginal 
likelihood 



Combinatorial Lower Bounds 

• BHC forms a lower bound for the marginal likelihood of an 
infinite mixture model by efficiently summing over an 
exponentially large subset of all partitions. 

 
 

• Idea is to deterministically sum over partitions with high 
probability, thereby accounting for most of the mass. 
 



Experimental Results 

• Toy Example 

• UCI Datasets 

• Newsgroup Clustering 



Results: a Toy Example 



Results: a Toy Example 



Predicting New Data Points 

 

 



Results: Purity Scores 

Purity is a measure of how well the hierarchical tree structure is correlated with  
the labels of the known classes. 
 



4 Newsgroups Results 

800 examples, 50 attributes: rec.sport.baseball, rec.sports.hockey, rec.autos, sci.space 



Newsgroups: Average Linkage HC 



Newsgroups: Bayesian HC 



Comparison with Mean Field Lower 
Bound  



Issues and Opportunities 

• Greedy algorithm: 

– The algorithm may not find the globally optimal tree 

• No tree uncertainty: 

– The algorithm finds a single tree, rather than a distribution over 
plausible trees 

•              complexity for building tree 

• Extend inference algorithm to more sophisticated models. 
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