Fast search for Dirichlet process
mixture model



Dirichlet Process Mixture Model




Existing Algorithms

 Sampling methods — MCMC
— Produce a true representation of the posterior
— Convergence can be difficult to diagnose

e Variational techniques
— Deterministic
— Produce an approximation to the true posterior

— Both of them run not very fast



Motivation

* Learning posteriors is expensive

* |In some cases of DPMM, we only need to know
about an approximate MAP cluster assignment
for each observation, which lead to a limited
search space

* We may need an efficient way of finding a high
probability region as initial settings of MCMC



Problem setup

* Input: x;.,
* Output: ¢, , Where:

¢ = argmax p(c,x)



A* Search Algorithm

* A greedy search algorithm which uses a distance-
plus-cost heuristic function to determine the
order of nodes to visit

— g(x) = d(x) + h(x)
* An extension of Dijikstra’s algorithm

* One efficient implementation uses a heap (max-
gueue) to keep track of current searching
progress



A* Search Algorithm

A* v.s. Dijikstra’s

A max-heap




Guarantees of global optima

e The heuristic function is “admissible”

— The estimated cost must always be lower than or
equal to the actual cost of reaching the goal state

* Heap size is unlimited
— Search paths are never cut off



* g:distance-plus-
cost function

* b: heap size

DP Search

function DPSearch
input: a scoring function g, beam size b, data x1.y
output: a clustering ¢

1: initialize max-queue: Q « [()]
2: while @ is not empty do

3:
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13:

remove state ¢q.yo from the front of Q
if N = N then return ¢
for all clusters d in ¢ and a new cluster do
let c® = ¢ @ (d)
compute the score s = g(c’, x)
update queue: Q < Enqueue(Q, Y, s)
end for
if b < oo and |Q| > b then
Shrink queue: Q «— Q1.
(drop lowest-scoring elements)

end if

14: end while




Scoring Function

max p(c, x)

max p(c)p(x|c)

max p(c)p(x|c)

max p(¢)grrivial(x|c?)heu(x|c’)
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e Scoring function g() is an estimation of the
posterior probability p(c, x)

* Our goal here is to find out a setting of cluster
assignments c that can maximize the posterior
probability



Maximize the prior p(c)
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 Coming from Chinese restaurant process



Trivial Scoring Function

gTrivial(a" | CO) = H H(;l?co:k)

* heuristic function is zero in log space

 A* becomes a Dijikstra’s algorithm, which lead
to an inefficient search



Admissible Function

gTrivial(ll’ | CO) (11)
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* Treat unclustered data point independently

* For each unclustered data point x, choose most like cluster
label k for x, then cluster remaining points as to only
whether they fall into k or not

* Can be considered as admissible when a “replica” trick is
used



Inadmissible Heuristic Function

N
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* Use the marginal likelihood as heuristic, which
means for each unclustered data point, assign
them a new cluster number

* No longer overestimate the posterior
probability, therefore not admissible



Experiment 1: Artificial data (DPGMM)
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Experiment 2: Handwritten data

* Dirichlet/Multinomial setting

* Conclusion is our search algorithm runs much
faster than Gibbs sampler, and gives better
MAP estimation of cluster assignments.



Experiment 3: NIPS documents

o Still Dirichlet/Multinomial setting

* Conclusion is our search algorithm runs much
much faster than Gibbs sampler



Advantages & Limitations

* Fast to find a MAP cluster assignment for each
data point

* Cannot represent the true posterior

* Applies only to exponential families with
conjugate prior (or at least speed will be slow
down when apply to nhon-conjugate
distributions)



