Infinite Sparse Factor Analysis and Infinite Independent Component Analysis

David Knowles and Zoubin Ghahramani
Paper Presented by
Mark Buller

Outline

- Motivation
- Background
 - Factor Analysis
 - ICA
- Extension to infinite models
 - A finite model
 - Indian buffet (One parameter)
 - Indian buffet + (Two parameter)
- Inference
 - Gibbs Sampling
 - Metropolis-Hastings
 - Sampling new features
 - Finding 2nd Indian Buffet Parameter
- Experimental Results

Motivation

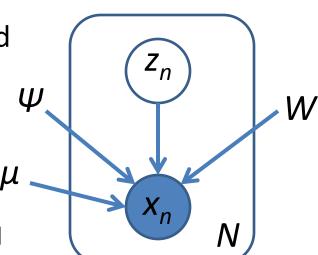
- Cocktail Party Problem or Blind Source Separation
 - Given an observed signal (y) of a mixture of sources
 - y = Ax (y = observed, A = mixing matrix, x = source)
 - Want to recover the mixing coefficients and sources

Example from Aalto University, Department of Information and Computer Science: http://research.ics.tkk.fi/ica/cocktail/cocktail_en.cgi

Background

Factor Analysis

- Linear Gaussian latent variable model
- Similar to probabilistic PCA (Tipping and Bishop 1997, 1999; and Roweis 1998)
- $P(x|z)=N(x|Wz + \mu, \Psi)$
- Solved using ML computed from EM
- Limitations:
 - Latent coordinate system is not meaningful
 - From y = Ax (y = observed, G = mixing matrix, x = source) We can recover the sources but not the mixing matrix.



Graphical Model from Bishop 2006.

Background

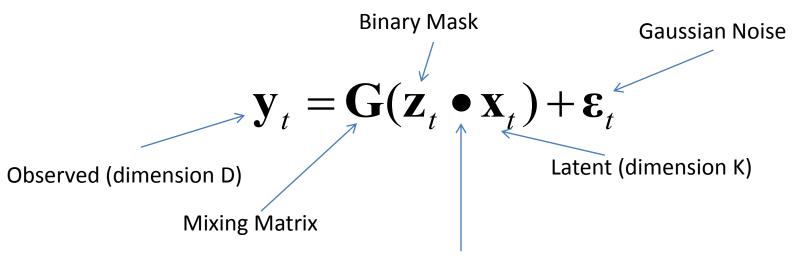
- Independent Component Analysis (ICA)
 - Linear non-Gaussian latent variable model
 - A non-Gaussian latent variable distribution allows the mixing matrix
 (G) to be estimated. (y = Gx)
 - Number of Sources (K) <= Observation Dimensions (D)

Example from Aalto University, Department of Information and Computer Science: http://research.ics.tkk.fi/ica/cocktail/cocktail_en.cgi

Contribution

- Model Extension:
 - Allows sources K> observed D
 - Can switch sources on and off
 - Provides a sparse model
 - Allows solutions using both
 Gaussian and non-Gaussian
 assumptions about the latent
 variable distribution

Infinite Model



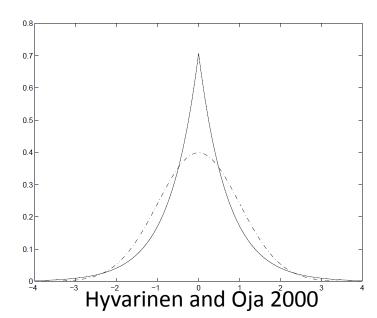
Element Wise Multiplication

$$\mathbf{\epsilon}_{t} \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2} \mathbf{I}\right)$$
 $\sigma_{\epsilon}^{2} \sim \mathcal{I}\mathcal{G}\left(a, b\right)$

$$\mathbf{g}_{k} \sim \mathcal{N}\left(0, \sigma_{G}^{2}\right)$$
 $\sigma_{G}^{2} \sim \mathcal{I}\mathcal{G}\left(c, d\right)$

$$\mathbf{Z} \sim \mathcal{I}\mathcal{B}\mathcal{P}(\alpha, \beta)$$
 $\alpha \sim \mathcal{G}\left(e, f\right)$

	$x_{kt} \sim \mathcal{N}\left(0,1\right)$	$x_{kt} \sim \mathcal{L}(1)$
$\beta = 1$	$isFA_1$	$iICA_1$
$\beta \sim \mathcal{G}(1,2)$	$isFA_2$	$iICA_2$



Infinite Binary Matrix Distribution (Z)

Approach:

- Define a finite model with K sources
- Take limit as $K \rightarrow \infty$
- Demonstrate that the infinite case is a simple stochastic process
 - Follows: Ghahramani, Griffiths and Sollich: Bayesian nonparametric latent feature models (2007)

Finite Model

- Assumptions:
 - Sources independent
 - Probability of source being active: π_k

$$P(\mathbf{Z}|\boldsymbol{\pi}) = \prod_{k=1}^{K} \prod_{t=1}^{N} P(z_{kt}|\pi_k) = \prod_{k=1}^{K} \pi_k^{m_k} (1 - \pi_k)^{N - m_k}$$

- $-m_k = \sum_{t=1}^N z_{kt}$ number of data points for which source k is active
- Define prior for π by assuming drawn from Beta distribution
 - Conjugate to Binomial Distribution
 - Chinese Restaurant Process made use of Dirichlet Process conjugacy to Multinomial Distribution
 - B(r,s)

Beta Distribution Prior

$$\begin{split} p(\pi_k) &= \frac{\pi_k^{r-1} (1 - \pi_k)^{s-1}}{B(r,s)} \\ B(r,s) &= \int_0^1 \pi_k^{r-1} (1 - \pi_k)^{s-1} \, d\pi_k \\ &= \frac{\Gamma(r) \Gamma(s)}{\Gamma(r+s)}. \\ &= \frac{\alpha}{1} \text{ and s = 1:} \end{split}$$

By taking
$$r = \frac{\alpha}{k}$$
 and $s = 1$:

$$B(\frac{\alpha}{K}, 1) = \frac{\Gamma(\frac{\alpha}{K})}{\Gamma(1 + \frac{\alpha}{K})} = \frac{K}{\alpha}$$

$$\pi_k \mid \alpha \sim \operatorname{Beta}(\frac{\alpha}{K}, 1)$$
 $\mathsf{Z}_{\mathsf{kt}} \mid \pi_k \sim \operatorname{Bernoulli}(\pi_k)$

Marginalize

$$P(\mathbf{Z}) = \prod_{k=1}^{K} \int \left(\prod_{i=1}^{N} P(z_{ik}|\pi_k)\right) p(\pi_k) d\pi_k$$

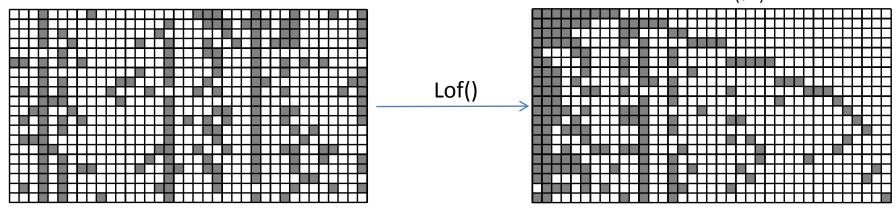
$$= \prod_{k=1}^{K} \frac{B(m_k + \frac{\alpha}{K}, N - m_k + 1)}{B(\frac{\alpha}{K}, 1)}$$

$$= \prod_{k=1}^{K} \frac{\frac{\alpha}{K} \Gamma(m_k + \frac{\alpha}{K}) \Gamma(N - m_k + 1)}{\Gamma(N + 1 + \frac{\alpha}{K})}$$

Conjugacy makes this marginalization possible Distribution is exchangeable depending on m_k

Take the Limit

- OK they use a cool trick here...
 - Define an equivalence class of left ordered binary matrices
 - Analog of partitions for assignment vectors
 - Use a function to map binary matrix into left order (lof(●))
 - A distribution over collections of histories. I.e.
 - History for source k at observation t is defined as (Z_{1k}, ... Z_{(t-1)k})



$$P(\mathbf{Z}) = \frac{\alpha^{K_+}}{\prod_{h>0} K_h!} \exp\left\{-\alpha H_N\right\} \prod_{k=1}^{K_+} \frac{(N-m_k)!(m_k-1)!}{N!}$$

 $H_N = \sum_{j=1}^N \frac{1}{j}$ N-th Harmonic Number, K_h num. rows with binary num. h K_+ Number of active features

Indian Buffet Process

- P(Z) relates to a simple stochastic process
- Buffet with infinite choices

Customer #

•••

•••

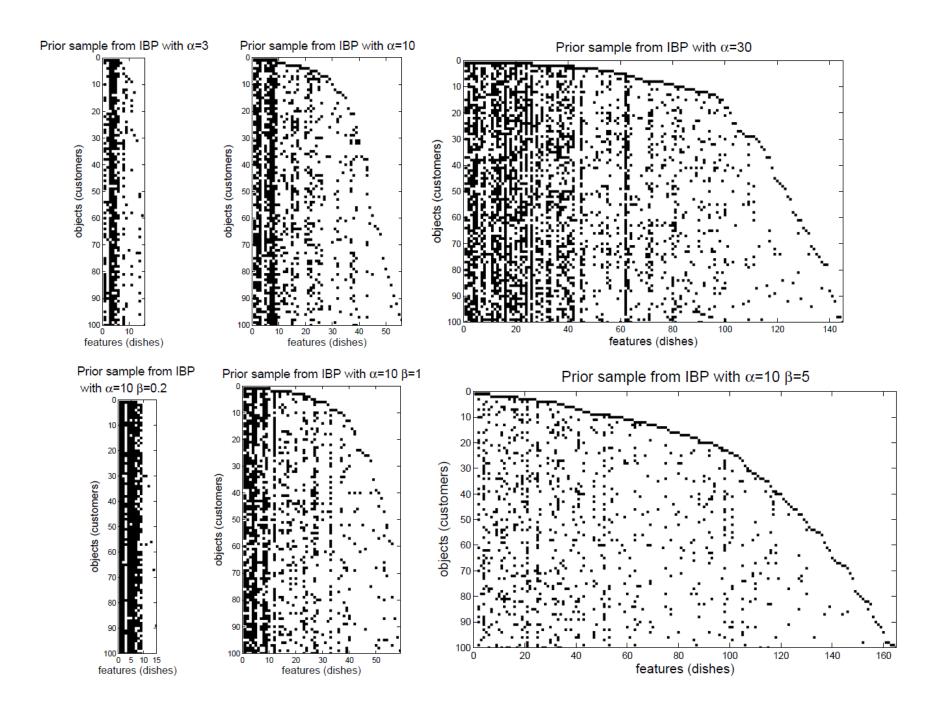
- 1 Samples Poisson (α) dishes
- i Samples previously sampled dishes with probability And tries $\left(\frac{\alpha}{i}\right)$ new dishes

$$P(z_{kt} = 1 | \mathbf{z}_{-kt}) = \frac{m_{k,-t}}{N}$$
$$m_{k,-t} = \sum_{s \neq t} z_{ks}$$

Two Parameter Generalization

- "Distribution on the number of features per object and the total number of features are coupled through α "
- Add an additional parameter β "a measure of feature repulsion"
- i_{th} customer now samples dish k with:
 - Probability $\frac{m_k}{\beta+i-1}$
 - Samples Poisson $(\frac{\alpha\beta}{\beta+i-1})$ new dishes
 - Marginal probability of **Z** becomes:

$$P(\mathbf{Z}|\alpha,\beta) = \frac{(\alpha\beta)^{K_{+}}}{\prod_{h>0} K_{h}!} \exp\left\{-\alpha H_{N}(\beta)\right\} \prod_{k=1}^{K_{+}} B(m_{k}, N - m_{k} + \beta)$$



Inference

Given observations Y

- Wish to infer:
 - hidden sources X

- which sources are active Z
- mixing matrix G
- Hyper parameters
- Gibbs sampling
 - Metropolis-Hastings steps for:
 - β
 - New Features
 - Samples are drawn from marginal distribution of the model parameters by
 - Successively sample conditional distribution of each parameter in turn, given all other parameters

Hidden Sources

- Sample each element of X for which z_{kt}=1
- For:
 - isFA conditional distribution is a Gaussian

$$P(x_{kt}|\mathbf{G}, \mathbf{x}_{-kt}, \mathbf{y}_t, \mathbf{z}_t) = \mathcal{N}\left(x_{kt}; \frac{\mathbf{g}_k^T \boldsymbol{\epsilon}_{-kt}}{\sigma_{\epsilon}^2 + \mathbf{g}_k^T \mathbf{g}_k}, \frac{\sigma_{\epsilon}^2}{\sigma_{\epsilon}^2 + \mathbf{g}_k^T \mathbf{g}_k}\right)$$

iICA piecewise Gaussian

$$P(x_{kt}|\mathbf{G}, \mathbf{x}_{-kt}, \mathbf{y}_t, \mathbf{z}_t) = \begin{cases} \mathcal{N}\left(x_{kt}; \mu_-, \sigma^2\right) x_{kt} > 0 \\ \mathcal{N}\left(x_{kt}; \mu_+, \sigma^2\right) x_{kt} < 0 \end{cases}$$
where $\mu_{\pm} = \frac{\mathbf{g}_k^T \boldsymbol{\epsilon}_{-kt} \pm \sigma_{\epsilon}^2}{\mathbf{g}_k^T \mathbf{g}_k}$ and $\sigma^2 = \frac{\sigma_{\epsilon}^2}{\mathbf{g}_k^T \mathbf{g}_k}$

Active Sources

 Sample Z define a ration of conditionals, r so that:

$$P(z_{kt} = 1|\mathbf{G}, \mathbf{X}_{-kt}, \mathbf{Y}, \mathbf{Z}_{-kt}) = \frac{r}{r+1}$$

$$r = \underbrace{\frac{P(\mathbf{y}_t|\mathbf{G}, \mathbf{x}_{-kt}, \mathbf{z}_{-kt}, z_{kt} = 1, \sigma_{\epsilon}^2)}{P(\mathbf{y}_t|\mathbf{G}, \mathbf{x}_{-kt}, \mathbf{z}_{-kt}, z_{kt} = 0, \sigma_{\epsilon}^2)}_{r_l} \underbrace{\frac{P(z_{kt} = 1|\mathbf{z}_{-kt})}{P(z_{kt} = 0|\mathbf{z}_{-kt})}}_{r_p}$$

$$r_p = \frac{m_{k,-t}}{\beta + N - 1 - m_{k,-t}}$$

$$r_l = \sigma \exp\left\{\frac{\mu^2}{2\sigma^2}\right\}$$

$$r_l = \sigma \sqrt{\frac{\pi}{2}} \left[F(0; \mu_+, \sigma) \exp\left\{\frac{\mu_+^2}{2\sigma^2}\right\} + (1 - F(0; \mu_-, \sigma)) \exp\left\{\frac{\mu_-^2}{2\sigma^2}\right\} \right]$$

Creating New Features

- For a given time point the number of active features k_n are sampled with a Metropolis Hastings move $\xi \to \xi^*$
- Move Accepted: $\min(1, r_{\xi \to \xi^*})$
- isfa $r_{\xi \to \xi^*} = |\mathbf{\Lambda}|^{-\frac{1}{2}} \exp\left(\frac{1}{2}\mathbf{\mu}^T \mathbf{\Lambda} \mathbf{\mu}\right)$ $\mathbf{\Lambda} = \mathbf{I} + \frac{\mathbf{G}^{*T} \mathbf{G}^*}{\sigma_{\epsilon}^2} \qquad \mathbf{\Lambda} \mathbf{\mu} = \frac{1}{\sigma_{\epsilon}^2} \mathbf{G}^{*T} \boldsymbol{\epsilon}_t$
- iICA $r_{\xi \to \xi^*} = \exp\left\{-\frac{1}{2\sigma_{\epsilon}^2}\mathbf{x}_t^{\prime T}\mathbf{G}^{*T}(\mathbf{G}^*\mathbf{x}_t^{\prime} 2\boldsymbol{\epsilon}_t)\right\}$

Mixture Weights

Sample columns g_k of G

$$P(\mathbf{g}_k|\mathbf{G}_{-k},\mathbf{X},\mathbf{Y},\mathbf{Z},\sigma_{\epsilon}^2,\sigma_G^2) \propto P(\mathbf{Y}|\mathbf{G},\mathbf{X},\mathbf{Z},\sigma_{\epsilon}^2)P(\mathbf{g}_k|\sigma_G^2)$$

Likelihood function exponent:

$$-\frac{1}{2\sigma_{\epsilon}^{2}}\operatorname{tr}(\mathbf{E}^{T}\mathbf{E}) = -\frac{1}{2\sigma_{\epsilon}^{2}}((\mathbf{x}_{k}^{T}\mathbf{x}_{k}^{T})(\mathbf{g}_{k}^{T}\mathbf{g}_{k}) - 2\mathbf{g}_{k}^{T}\mathbf{E}|_{\mathbf{g}_{k}=0}) + \operatorname{const}$$

• Conditional of g_k is $N(\mu, \Lambda)$ where:

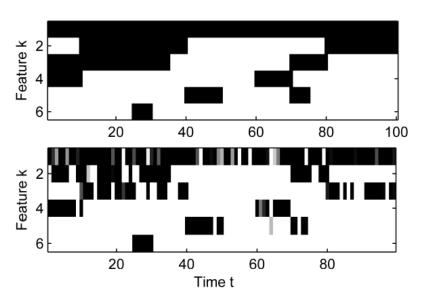
$$\boldsymbol{\mu} = \frac{\sigma_G^2}{\mathbf{x}_k'^T \mathbf{x}_k' \sigma_G^2 + \sigma_\epsilon^2} \mathbf{E}|_{\mathbf{g}_k = 0} \mathbf{x}_k'$$
$$\boldsymbol{\Lambda} = \left(\frac{\mathbf{x}_k'^T \mathbf{x}_k'}{\sigma_\epsilon^2} + \frac{1}{\sigma_C^2}\right) \mathbf{I}_{D \times D}$$

Results

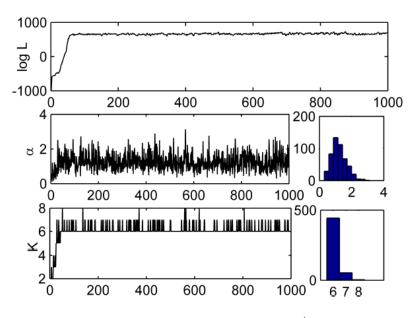
Synthetic Data

30 sets randomly generated data (D=7, K=6,
 N=200), using both Gaussian and Laplacian

distributions

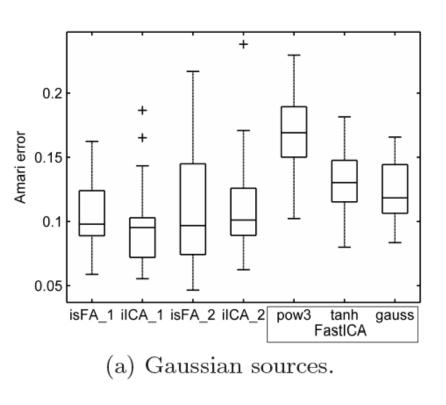


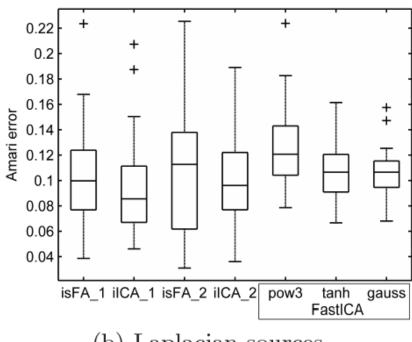
(a) Top: True **Z**. Bottom: Inferred **Z**.



(b) Log likelihood, α and K^+ for duration of 1000 iteration run.

Model Comparison





(b) Laplacian sources.

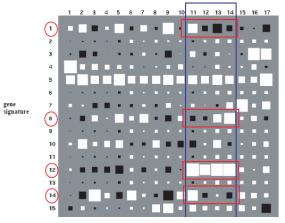
2 Parameter IBP results show more variance

FastICA is affected more by source distribution

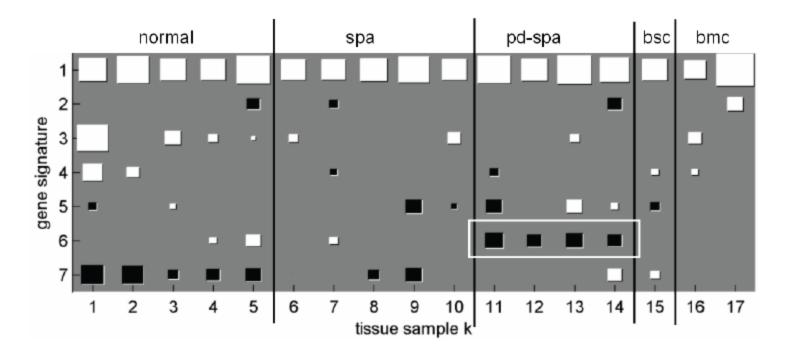
Gene Expression Study

- Ovarian Cancer Study
- N=172 genes (data points)
- D=17 tissue samples
- Tissues grouped into 5 tissue types:
 - 1 healthy
 - 4 diseased
- Some gene signatures are expressed across all samples, others are silent
 - The sparse model ICA model is applicable here

Hinton Diagram of G



ICA Technique, Martoglio, Miskin, Smith and MacKay 2002



Questions

- Need to switch sources on and off? Can't a source be 0 in the mixing matrix?
- Are the results that much better than FastICA?
- No speed comparisons with FastICA?
- Does having the 2 parameter IBP help?