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Motivation 
• Cocktail Party Problem or Blind Source Separation 

– Given an observed signal (y) of a mixture of sources 

– y = Ax  (y = observed, A = mixing matrix, x = source) 

– Want to recover the mixing coefficients and sources 

 

Example from Aalto University, Department of Information and Computer Science: 
http://research.ics.tkk.fi/ica/cocktail/cocktail_en.cgi 
 



Background 

• Factor Analysis 
– Linear Gaussian latent variable model 

– Similar to probabilistic PCA (Tipping and 
Bishop 1997, 1999; and Roweis 1998) 

– P(x|z)=N(x|Wz + μ, Ψ) 

– Solved using ML computed from EM 

– Limitations: 
• Latent coordinate system is not meaningful 

• From y = Ax  (y = observed, G = mixing 
matrix, x = source) We can recover the 
sources but not the mixing matrix. 
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Graphical Model from Bishop 2006. 
 



Background 
• Independent Component Analysis (ICA) 

– Linear non-Gaussian latent variable model 

– A non-Gaussian latent variable distribution allows the mixing matrix 
(G) to be estimated. (y = Gx)  

– Number of Sources (K) <= Observation Dimensions (D) 

 

Example from Aalto University, Department of Information and Computer Science: 
http://research.ics.tkk.fi/ica/cocktail/cocktail_en.cgi 
 



Contribution 

• Model Extension: 

– Allows sources K> observed D 

– Can switch sources on and off 

• Provides a sparse model 

– Allows solutions using both 
Gaussian and non-Gaussian 
assumptions about the latent 
variable distribution 
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Infinite Model 
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Gaussian Noise 

Element Wise Multiplication 

Binary Mask 

Hyvarinen and Oja 2000 



Infinite Binary Matrix Distribution (Z) 

• Approach: 

– Define a finite model with K sources 

– Take limit as 

– Demonstrate that the infinite case is a simple 
stochastic process 

• Follows: Ghahramani, Griffiths and Sollich: Bayesian 
nonparametric  latent feature models (2007) 
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Finite Model 

• Assumptions: 
– Sources independent 

– Probability of source being active: 

 

 

 

–                         number of data points for which source k is active 

– Define prior for       by assuming drawn from Beta distribution 
• Conjugate to Binomial Distribution 

• Chinese Restaurant Process made use of Dirichlet Process conjugacy to Multinomial 
Distribution 

• B(r,s) 

 

 



Beta Distribution Prior 

By taking              and s = 1: 
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Marginalize 

Conjugacy makes this marginalization possible 
Distribution is exchangeable depending on 



Take the Limit 
• OK they use a cool trick here… 

– Define an equivalence class of left ordered binary matrices 
• Analog of partitions for assignment vectors  

– Use a function to map binary matrix into left order (lof(●))  

– A distribution over collections of histories. I.e.  
• History for source k at observation t is defined as (Z1k, … Z(t-1)k) 

 

Lof() 

N-th Harmonic Number, Kh num. rows with binary num. h 
Number of active features 



Indian Buffet Process 

• P(Z) relates to a simple stochastic process 

• Buffet with infinite choices  
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i Samples previously sampled dishes with probability 
And tries         new dishes 

Samples Poisson (α )dishes 



Two Parameter Generalization 

• “Distribution on the number of features per 
object and the total number of features are 
coupled through α” 

• Add an additional parameter β “a measure of 
feature repulsion” 

• ith customer now samples dish k with: 
– Probability 

– Samples Poisson                   new dishes 

– Marginal probability of Z becomes: 

Ghahramani, Griffiths, Sollich 2006 





Inference 

• Given observations Y 
 

• Wish to infer: 
– hidden sources X 

 
– which sources are active Z 
– mixing matrix G 
– Hyper parameters 

• Gibbs sampling 
– Metropolis-Hastings steps for: 

• β 
• New Features 

– Samples are drawn from marginal distribution of the model 
parameters by 
• Successively sample conditional distribution of each parameter in turn, given 

all other parameters 



Hidden Sources 

• Sample each element of X for which zkt=1 

• For: 

– isFA conditional distribution is a Gaussian 

 

 

– iICA piecewise Gaussian 



Active Sources 

• Sample Z define a ration of  conditionals, r so 
that: 
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Creating New Features 

• For a given time point the number of active 
features kn are sampled with a Metropolis 
Hastings move 

• Move Accepted:  

 

• isFA 

 

• iICA 



Mixture Weights 

• Sample columns gk of G 

 

• Likelihood function exponent: 

 

 

• Conditional of gk is N(μ,Λ) where: 

 

 

 



Results 

• Synthetic Data 

– 30 sets randomly generated data (D=7, K=6, 
N=200), using both Gaussian and Laplacian 
distributions 



Model Comparison 

2 Parameter IBP results show more variance 
 
FastICA is affected more by source distribution 
 



Gene Expression Study 

• Ovarian Cancer Study 

• N=172 genes (data points) 

• D=17 tissue samples  

• Tissues grouped into 5 tissue types: 
– 1 healthy 

– 4 diseased 

• Some gene signatures are expressed across all 
samples, others are silent 
– The sparse model ICA model is applicable here 



Hinton Diagram of G 

ICA Technique, Martoglio, Miskin, 
Smith and MacKay 2002 



Questions 

• Need to switch sources on and off? Can’t a 
source be 0 in the mixing matrix? 

• Are the results that much better than FastICA? 

• No speed comparisons with FastICA? 

• Does having the 2 parameter IBP help? 

 


