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Motivation

Problem:

- To learn topic models for collections of text, images and other semi-structured
corpora.

- The original topic models treat topics as a “flat” set of probability distributions,
with no direct relationship between one topic and another. They fail to indicate
the level of abstraction of a topic, or how the various topics are related.

- We want an algorithm to both find useful sets of topics and learn to organize
the topics according to a hierarchy in which more abstract topics are near the
root of the hierarchy and more concrete topics are near the leaves.
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Motivation

Problem:

- To learn topic models for collections of text, images and other semi-structured
corpora.

- The original topic models treat topics as a “flat” set of probability distributions,
with no direct relationship between one topic and another. They fail to indicate
the level of abstraction of a topic, or how the various topics are related.

- We want an algorithm to both find useful sets of topics and learn to organize
the topics according to a hierarchy in which more abstract topics are near the
root of the hierarchy and more concrete topics are near the leaves.

- While a classical unsupervised analysis might require the topology of the
hierarchy to be chosen in advance, we want the approach to place high
probability on those hierarchies that best explain the data. We need a
distribution on topologies.

- We wish to allow this distribution to have its support on arbitrary topologies, --
there should be no limitations such as a maximum depth or maximum branching
factor. BNP is needed.
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Chinese Restaurant Process
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Nested Chinese Restaurant Process
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NnCRP vs nDP
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Hierarchical Latent Dirichlet Allocation
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for each table £ € T in the infinite tree do
- Draw a topic 35 ~ Dirichlet(n)
end for
for each document d € {1,2,..., D} do
- Draw ¢; ~ nCRP ()
- Draw a distribution over levels in the tree, 6/{m, 7} ~ GEM(m, )
for each word in document d do
- Choose level Z; |04 ~ Discrete(fq)
- Choose word Wy ,,|{24n. €4, B} ~ Discrete(S.,[24.,])
end for
end for
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Hierarchical Latent Dirichlet Allocation

e
| RORCY > 2 SOSMSE

A\ N

BB 5 - B85 - B8] -
O & & ®

for each table &£ € T in the infinite tree do
- Draw a topic 3 ~ Dirichlet@
end for
for each document d € {1,2,..., D} do
- Draw [cg]~ nCRP@
- Draw a distribution over levels in the tree, 6|{m, 7} ~ GEM(@
for each word in document d do
- Choose level|Z;,{|64 ~ Discrete(6,)
- Choose word Wy ,[{z4.n. ca, B} ~ ] Discrete(3.,[24.n])
end for o
end for
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hLDA vs Hierarchical Clustering
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Notation
Ci1:-D = Paths for documents 1,...,.D
Z1:D = Level assignments for documents 1,...,D

Z—(d,n) = All level assignments excluding that for word n in doc d

Zd,—n = All level assignments for doc d excluding word n
Y = nCRP hyperparameter

7] = Topic hyperparameter

M, TT = Level distribution hyperparameters

W1:D =Words for documents 1,...,D
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Inference for hLDA

- Given the model and a corpus, we want to estimate the distribution of (some of)
the latent variables. In math words:

p(cl:Da Zl:Dh/g n,m, T, W1:D)
- Approximate this posterior by Collapsed Gibbs Sampling.

- Iterate between:
(1) Sampling level assignments:
P(2dn|Z—(d.n), ©, W, M, T, 1) X D(Zd.n|Zd,—n> M T)P(Wd,n|Zs € W_ (4,05 7)
(2) Sampling paths:
p(cd|w,c_4,2,1,7) x p(cilc—q,7)p(Walc, w_4,2.7)
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Inference (CGS)

Integrate out distributions over levels and topics
Sample the paths and level assignments
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The Markov chain
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Sampling level assignments

p(zd,n|z—(d,n)a C,w,m,T, 77) X p(zd,n‘zd,—m m, ﬂ')p(wd,ﬂ‘za C,W_(dn)> 77)

=
Probability ofrlevel assignment Probability of word given
given other level assignments level assignments
Infinite
Want to sample: y
P(2dn = k|Z_(4n),C; W, m, T, 1), E=1,2,...

Solution: sample in stages
« Sample a level from all currently represented levels, plus one level deeper
* If deeper level is chosen, sample from a Bernoulli to go even deeper, iteratively
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Sampling level assignments

For already represented levels: Expected length of

_ —— the k-th stick
P{Ed.n = ff|zd,_ﬂ, m,m) = E |V H{l _ EJ]

k—1
= EWVil []El - V]
i=1
B mn—k#zd_n—ﬁc] (1 —m)m + #|24_n > j]
‘|‘#[Ed HER “"‘#Zd—n}}l

p('wd,n|zz C:“‘r—(d,n}v 'f?} X #[z—{d,n] = 2dmns Czg,, = Cdzgne “"—(d.ﬂ} — u"d.ﬂ] + 7]

!

Smoothed number of similar words assigned to this
level in this path

For the deeper levels:
rﬂax{zd,—ﬂ}
p{:zd,n :} ma}:{:Ed.—?!)|Z{E,—n1“r1?n:ﬂ—': T}) — 1 - Z p(zdn — j|zd,—nawa m'-.- '.-'T., T])
j=1

T

Leftover probability after we account for the already represented levels
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Sampling level assignments

If we choose to go deeper...

Start with:
f=max(zg_,)+1
And sample from a Bernoulli with parameters:

P(zan = |24 —n,2d4n > €—1L,w,m,m,n) = (1 —m)p(win |z ¢, W_4,),7)

pP(zdn > €| 2d,—ns2dn > €—1) = 1 —p(zdgn = €| 2d,—n, 2dn > € — 1, W, m,m,n).

Until we get a “hit”.
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Sampling paths

We're only concerned with paths of the length of the deepest level
assignment variable for the document under consideration.

p(ca|w,c_d,2,7,7) X p(cd|c—a,v)p(Wd|c, W_qd,2,7)

/ \
\
Probability of path given Probability of words

all other paths given path

p(cdlc—a,7) = nCRP prior

max(Zg) —, _ i
p(wale,w_q,z,n) = ] T, #lza=Lcar=cae,W_a=uw|+ V) X
1 —dy = P—1 Hw F{#[Z—d = E., C—d__f = Cd,f: W_4—= u]] _|_ T}’\J

[, T (#z="{ce =cae,w =w|+n)
'Y FHlz=1lco =cap,Ww=w|+Vn)

Note: path must be drawn as a block; levels are not independent.
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Sampling paths

All the possible paths a new document can take through the existing tree:




Sampling the hyperparameters

Take the nice Bayesian approach of putting priors on the hyperparameters:

m ~ Beta(ap,as)
m ~ Exponential(as)
v ~ Gamma(ay, as)

n ~ Exponential(ag)

Put Metropolis-Hastings steps between iterations of the Gibbs sampler.

What purpose does this serve?
Resulting inference is less influenced by hyper-hyperparameters than by
hyperparameters.
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Log complete probability

Convergence
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Experiments (scientific abstracts)

* Fix parameters:

n=1{2.0,1.0,0.5}; ~v=10; 7=100; m=0.5

» Recall that the topics have been integrated out, so they'll have to be
estimated in the posterior. Posterior inference only yields a tree structure ¢, and
assignments to levels z.

» The probability of a particular word w at a particular level / in a particular

path p is:

Hz=lc=p.Ww=w|+7
H#lz="l.c=p|+Vy

p(w|z,c,w,n) =
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JACM abstracts
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Psychological Review abstracts
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LDA v. hLDA

* Number of topics in LDA fixed beforehand
» In LDA, each document can place an arbitrary distribution over topics, not only
those that lie on a path in the hierarchy.

Mean held -out log like lihood

Mumber of topics
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LDA v. hLDA
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Conclusions

» The Good:

* The nested CRP allows a flexible family of prior distributions over arbitrary
tree structures; definitely could be useful for more than just topic models.

» Nice qualitative results for topic hierarchies.

« Same inference of number of topics as a model like HDP

» The Bad/Ugly:

* The restriction that documents can only follow a single path in the tree is a
possibly limiting one. (Michael Jordan talked about this extension when he
spoke in class).

» Quantitative evaluation is not extensive enough.

» I'd like to see comparisons of hLDA with HDP, as opposed to LDA. It seems
like that would get closer to the heart of whether hierarchies are helpful or
not.



