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Motivation

Problem:

- To learn topic models for collections of text, images and other semi-structured 
corpora.

- The original topic models treat topics as a “flat” set of probability distributions, 
with no direct relationship between one topic and another. They fail to indicate 
the level of abstraction of a topic, or how the various topics are related.

- We want an algorithm to both find useful sets of topics and learn to organize 
the topics according to a hierarchy in which more abstract topics are near the 
root of the hierarchy and more concrete topics are near the leaves.
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Motivation
Problem:

- To learn topic models for collections of text, images and other semi-structured 
corpora.

- The original topic models treat topics as a “flat” set of probability distributions, 
with no direct relationship between one topic and another. They fail to indicate 
the level of abstraction of a topic, or how the various topics are related.

- We want an algorithm to both find useful sets of topics and learn to organize 
the topics according to a hierarchy in which more abstract topics are near the 
root of the hierarchy and more concrete topics are near the leaves.

- While a classical unsupervised analysis might require the topology of the 
hierarchy to be chosen in advance, we want the approach to place high 
probability on those hierarchies that best explain the data. We need a 
distribution on topologies.

- We wish to allow this distribution to have its support on arbitrary topologies, -- 
there should be no limitations such as a maximum depth or maximum branching 
factor. BNP is needed.
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Chinese Restaurant Process
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Nested Chinese Restaurant Process
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nCRP vs nDP
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Hierarchical Latent Dirichlet Allocation
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Figure from Blei, et al 2003

Infinite tree

Document paths

Distribution over levels

Topics

Actual levels
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Hierarchical Latent Dirichlet Allocation

Slide10 



hLDA vs Hierarchical Clustering
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hLDA vs HDP-LDA
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Notation

= Paths for documents 1,...,D

= Level assignments for documents 1,...,D

= nCRP hyperparameter

= Topic hyperparameter

= Level distribution hyperparameters

= Words for documents 1,...,D

= All level assignments excluding that for word n in doc d

= All level assignments for doc d excluding word n
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Inference for hLDA

- Approximate this posterior by Collapsed Gibbs Sampling.

- Given the model and a corpus, we want to estimate the distribution of (some of) 
the latent variables. In math words:

(1) Sampling level assignments:

(2) Sampling paths:

- Iterate between:
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Inference (CGS)

Sample

Sample

Integrate out distributions over levels and topics
Sample the paths and level assignments

Figure from Blei, et al 2003
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The Markov chain

The path of the document

Level 
assignments
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Sampling level assignments

Want to sample:
Infinite

Solution: sample in stages 
! Sample a level from all currently represented levels, plus one level deeper
! If deeper level is chosen, sample from a Bernoulli to go even deeper, iteratively

Probability of level assignment 
given other level assignments

Probability of word given
level assignments
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Sampling level assignments

For already represented levels:

For the deeper levels:

Expected length of 
the k-th stick

Smoothed number of similar words assigned to this 
level in this path

Leftover probability after we account for the already represented levels
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If we choose to go deeper...

Start with:

And sample from a Bernoulli with parameters:

Until we get a “hit”.

Sampling level assignments

1

2

3

4

5
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Sampling paths

We're only concerned with paths of the length of the deepest level 
assignment variable for the document under consideration.

Probability of path given 
all other paths

Probability of words 
given path

Note: path must be drawn as a block; levels are not independent.

= nCRP prior
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Sampling paths

1 2 3 4

5 6

7

All the possible paths a new document can take through the existing tree:
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Sampling the hyperparameters

Take the nice Bayesian approach of putting priors on the hyperparameters:

Put Metropolis-Hastings steps between iterations of the Gibbs sampler.

What purpose does this serve?
Resulting inference is less influenced by hyper-hyperparameters than by 
hyperparameters.
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Convergence

Approximation of the posterior mode for these iterations
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Experiments (simulated data)

True dataset hierarchy Posterior mode

! 100 documents drawn from an hLDA model. 
! 
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Experiments (scientific abstracts)

! Recall that the topics have been integrated out, so they'll have to be 
estimated in the posterior. Posterior inference only yields a tree structure c, and 
assignments to levels z. 

! The probability of a particular word w at a particular level l in a particular 
path p is:

! Fix parameters:
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JACM abstracts

Function words

Algorithms
Systems

Programming languages
Networks
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Psychological Review abstracts

Function words

Cognitive

Behavioral

Social

Slide 27 



  

PNAS abstracts

Function words

Neuroscience

Population genetics

Enzymology
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LDA v. hLDA
! Number of topics in LDA fixed beforehand
! In LDA, each document can place an arbitrary distribution over topics, not only  
  those that lie on a path in the hierarchy. 
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LDA v. hLDA

Function words everywhere
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Conclusions
! The Good: 

! The nested CRP allows a flexible family of prior distributions over arbitrary 
tree structures; definitely could be useful for more than just topic models.

! Nice qualitative results for topic hierarchies.
! Same inference of number of topics as a model like HDP

! The Bad/Ugly: 
! The restriction that documents can only follow a single path in the tree is a 

possibly limiting one. (Michael Jordan talked about this extension when he 
spoke in class).

! Quantitative evaluation is not extensive enough.
! I'd like to see comparisons of hLDA with HDP, as opposed to LDA. It seems 

like that would get closer to the heart of whether hierarchies are helpful or 
not.
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