A Hierarchical Bayesian Language Model based on Pitman-Yor Processes

Yee Whye Teh

Language Model

Given a sentence of t words:

$$word_1$$
, $word_2$, ..., $word_t$

• An n-gram **LANGUAGE MODEL** defines a probability distribution over the current $word_i$ given the prior n-1 words.

$$P(word_i|word_{i-n+1},...,word_{i-1})$$

 This sentence then can be typically represented by the probability:

```
P(word_1, word_2, ..., word_t) = \prod_{i=1}^{t} P(word_i | word_{i-n+1}, ..., word_{i-1})
```

Language Model (cont)

- Consider a set vocabulary W with V word types
- Each word $\mathbf{w} \in W$, and a context $\mathbf{u}: n-1$ prior-word
 - E.g. n=3, <u>bayesian nonparametric model</u>
- The vector of word probability estimates for n-grams:

$$G_u = [G_u(w)]_{w \in W} = [G_u(w_1), ..., G_u(w_v)]$$

Maximum Likelihood estimation:

$$P(word_i = w|word_{i-n+1}, ..., word_{i-1} = u)$$

$$= G_u^{ML}(w) = \frac{c_{uw}}{\sum_{w'} c_{uw'}} = \frac{c_{uw}}{c_{u}}$$

Smoothing

- Maximum Likelihood is expected to be a very poor estimate given a realistic corpus size
 - What about a trigram uw which has never occurred in the training data
 - i.e. $G_u^{ML}(w) = 0$
- Smoothing is used to address this problem.

$$G_u^{ML}(w) = \frac{\delta + c_{uw}}{\delta |V| + c_{u}}$$

Back-off and Interpolated Smoothing

Back-off approach:

 Only use lower-order model when data for higher- order model is unavailable (i.e. count is zero).

$$P_{katz}(w_n \mid w_{n-N+1}^{n-1}) = \begin{cases} P^*(w_n \mid w_{n-N+1}^{n-1}) & \text{if } C(w_{n-N+1}^{n-1}) > 1\\ \alpha(w_{n-N+1}^{n-1})P_{katz}(w_n \mid w_{n-N+2}^{n-1}) & \text{otherwise} \end{cases}$$

Interpolated approach:

 Linearly combine estimates of *n*-gram models of increasing order.

$$\hat{P}(w_n \mid w_{n-2}, w_{n-1}) = \lambda_1 P(w_n \mid w_{n-2}, w_{n-1}) + \lambda_2 P(w_n \mid w_{n-1}) + \lambda_3 P(w_n)$$
Where: $\sum_i \lambda_i = 1$

Bayesian Smoothing

Estimation

$$P(G_u|\mathcal{D}) \propto P(\mathcal{D}|G_u)P(G_u)$$

Predictive Inference

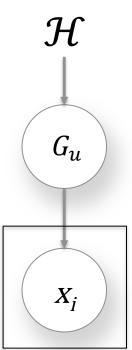
$$P(word_{i} = w|word_{i-n+1}, ..., word_{i-1} = u, \mathcal{D})$$

$$= \int P(w|u, G_{u})P(G_{u}|\mathcal{D})dG_{u}$$

Priors over distributions

$$G_u \sim \mathcal{DP}(\theta, \mathcal{H})$$

 $G_u \sim \mathcal{PY}(d, \theta, \mathcal{H})$



Pitman-Yor Process

Pitman-Yor Process

$$\mathcal{P}\mathcal{Y}(d,\theta,G_0)$$

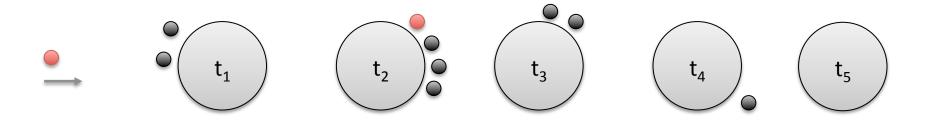
- d: discount parameter, $0 \le d < 1$
- θ : strength (concentration) parameter, $\theta > -d$
- G_0 : base distribution
- Generalization of the Dirichlet process (d=0)
- Pitman-Yor processes produce distributions over words given by a power law distribution
 - [Goldwater et al 2006] investigated the Pitman-Yor process from this perspective.

Pitman-Yor Process for a unigram language model

- To estimate a word $w \in W$,
 - $P(word_i = w|word_{i-n+1}, ..., word_{i-1} = u)$ = $P(word_i = w) = G(w)$
 - $G = [G(w)]_{w \in W}$

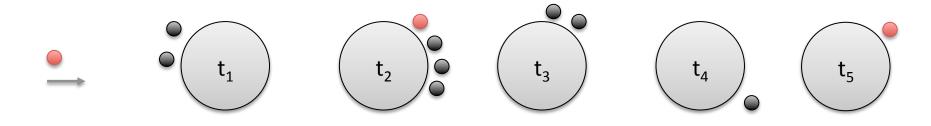
- $G \sim \mathcal{P} \mathcal{Y}(d, \theta, G_0)$
 - -d: discount parameter, $0 \le d < 1$
 - $-\theta$: strength parameter, $\theta > -d$
 - $-G_0$: a mean vector for unigram, using uniform distribution over fixed vocabulary W of V words

 Easiest to understand them using Chinese restaurant processes.



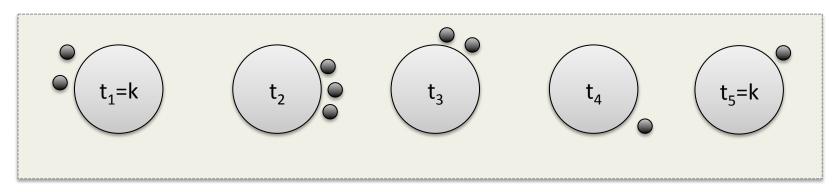
$$P(sit at an occupied table t_i) = \frac{c_{t_i} - d}{\theta + c_i}$$

 Easiest to understand them using Chinese restaurant processes.



$$P(sit \ at \ an \ occupied \ table \ t_i) = \frac{c_{t_i} - d}{\theta + c}$$
 $P(sit \ at \ new \ table) = \frac{\theta + dt}{\theta + c}$

 Given the seating arrangement S, the predictive probability of a test word k is:



$$P(x_{c.+1} = k|S) = \frac{c_k - dt_k}{\theta + c.} + \frac{\theta + dt.}{\theta + c.}G_0(k)$$

What about *n*-gram language model?

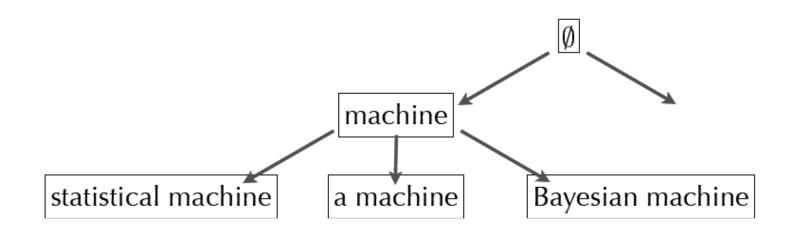
- Hierarchical Bayesian models
 - Capture the dependencies by statistical strength among different components of the language model

Specifically: hierarchical model based on the tree of suffixes: CONTEXT TREES

Context Tree

 Basic assumption: words appearing later in a context are more important

Xxxxxxx x xxxxxxx in statistical machine learning. Xxxxxx xx x x x xx. Bayesian machine xxx xx. Xxxx Is a machine....



Hierarchical Bayesian Models on Context Tree

[MacKay and Peto 1994]

 The probability of the current word w following the context u

$$P(word_i = w | word_{i-n+1}, ..., word_{i-1} = u) = G_u(w)$$

The vector of word probability estimates for n-grams

$$G_u = [G_u(w)]_{w \in W} = [G_u(w_1), ..., G_u(w_v)]$$

Tie related distribution together

$$G_{u=statistical\ machine} \sim \mathcal{DP}(\theta, G_{\pi(u)=machine})$$
 $G_{u=statistical\ machine} \sim \mathcal{PY}(d, \theta, G_{\pi(u)=machine})$
 $G_{machine}$
 $G_{machine}$
 $G_{a\ machine}$
 $G_{a\ machine}$

Hierarchical Bayesian Models on Context Tree

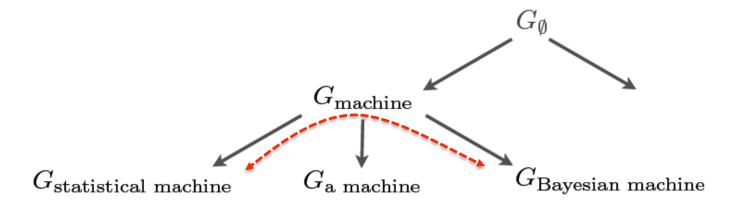
[MacKay and Peto 1994]

Tie related distribution together

$$G_{statistical\ machine} \sim \mathcal{DP}(\theta, G_{machine})$$

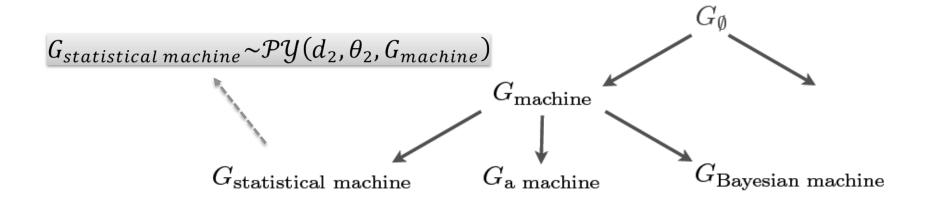
 $G_{statistical\ machine} \sim \mathcal{PY}(d, \theta, G_{machine})$

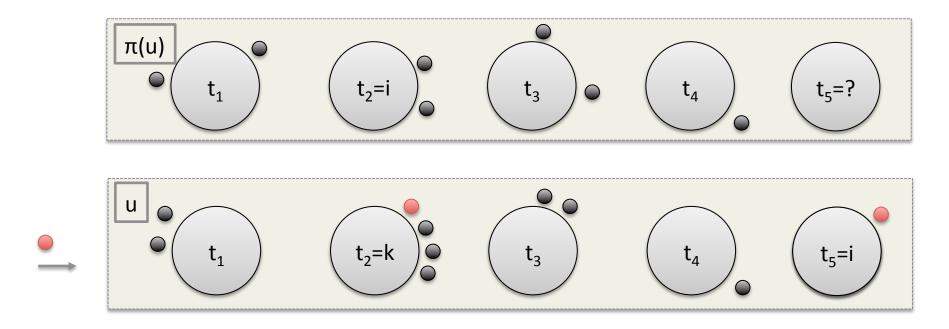
- Observations in one context affect inference in other context.
- Statistical strength is shared between similar contexts
- E.g. Observe "statistical machine learning"



Hierarchical Pitman-Yor Process for n-gram Language Models

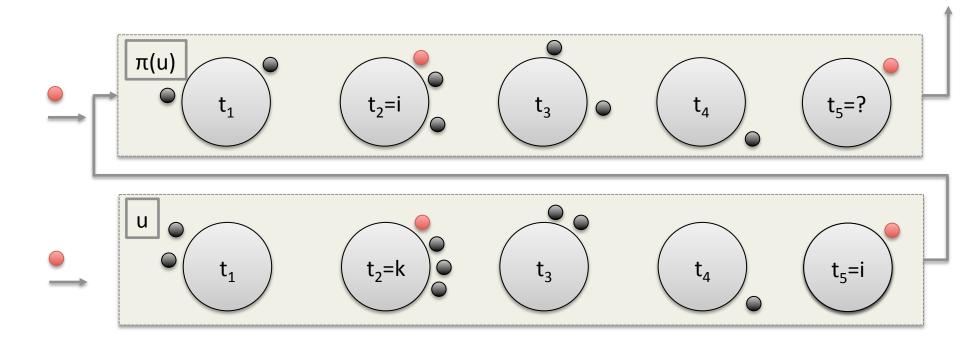
- Use a Pitman-Yor process as the prior for each node $G_u = [G_u(w)]_{w \in W}$
- $G_u \sim \mathcal{P} \mathcal{Y}(d_{|u|}, \theta_{|u|}, G_{\pi(u)})$





$$P(sit \ at \ an \ occupied \ table \ k) = \frac{c_{uwk} - d_{|u|}}{\theta_{|u|} + c_{u...}}$$

$$P(sit \ at \ a \ new \ table) = \frac{\theta_{|u|} + d_{|u|}t_{u.}}{\theta_{|u|} + c_{u...}}$$



$$P(sit \ at \ an \ occupied \ table \ i) = \frac{c_{\pi(u)wi} - d_{|\pi(u)|}}{\theta_{|\pi(u)|} + c_{\pi(u)}}$$

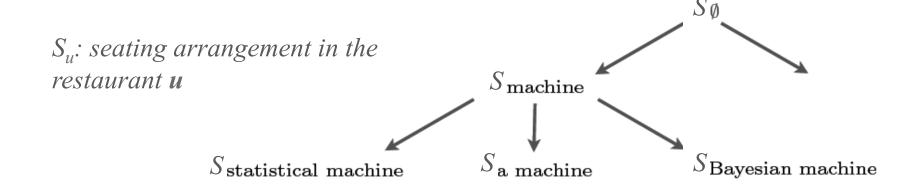
$$P(sit \ at \ a \ new \ table) = \frac{\theta_{|\pi(u)|} + d_{|\pi(u)|}t_{\pi(u)}}{\theta_{|\pi(u)|} + c_{\pi(u)}}$$

Hierarchical Pitman-Yor Process for n-gram Language Models

Given a particular seating arrangement,

$$P(w = learning \mid u = statistical machine)$$

$$= \frac{c_{uw} - d_{|u|}t_{uw}}{\theta_{|u|} + c_{u}} + \frac{\theta_{|u|} + d_{|u|}t_{u}}{\theta_{|u|} + c_{u}} P(w = learning \mid \pi(u) = machine)$$



What's next? Inference

 Based on the framework for Hierarchical Pitman-Yor Language Model, to get the probability over a word w after a context u P(w|u) given training data D:

$$p(w|\mathbf{u}, \mathcal{D}) = \int p(w|\mathbf{u}, \mathcal{S}, \mathbf{\Theta}) p(\mathcal{S}, \mathbf{\Theta}|\mathcal{D}) d(\mathcal{S}, \mathbf{\Theta})$$

- inference of seating arrangements S in each restaurant
- estimation of the context-specific parameters Θ

Inference of Seating Arrangements

 Gibbs sampling is used to keep track of which table each customer sits at

Steps:

- Iterative over all customers present in each restaurant, resampling the table at which each customer sits
 - Randomly removing a customer from the restaurant
 - Then resampling the table at which that customer sits

Estimation of the context parameters

For a n-gram language model, there are 2n parameters

$$\Theta = \{d_m, \theta_m : 0 \le m \le n - 1\}$$

• Use the auxiliary variable sampling method, assuming $\theta_m \sim Gamma(\alpha_m, \beta_m)$ $d_m \sim Beta(a_m, b_m)$

• Further details please find the technical report [Teh, 2006]

The predictive probability:

• Approximate the integral with samples $\{S^{(i)}, \Theta^{(i)}\}_{i=1}^{I}$ drawn from $p(S, \Theta/D)$:

$$p(w|\mathbf{u}, \mathcal{D}) \approx \sum_{i=1}^{I} p(w|\mathbf{u}, \mathcal{S}^{(i)}, \mathbf{\Theta}^{(i)}) / I$$

Interpolated Kneser-Ney (IKN) and Modified Kneser-Ney (MKN)

$$P_u^{ML}(w) = \frac{c_{uw}}{\sum_{w'} c_{uw'}} = \frac{c_{uw}}{c_u}.$$

$$P_{\mathbf{u}}^{\text{IKN}}(w) = \frac{\max(0, c_{\mathbf{u}w} - d_{|\mathbf{u}|})}{c_{\mathbf{u}}} + \frac{d_{|\mathbf{u}|}t_{\mathbf{u}}}{c_{\mathbf{u}}} P_{\pi(\mathbf{u})}^{\text{IKN}}(w) \qquad D(c) = \begin{cases} 0 & \text{if } c = 0 \\ D_1 & \text{if } c = 1 \\ D_2 & \text{if } c = 2 \\ D_{3+} & \text{if } c \geq 3 \end{cases}$$

$$D(c) = \left\{ \begin{array}{ll} 0 & \text{if } c = 0 \\ D_1 & \text{if } c = 1 \\ D_2 & \text{if } c = 2 \\ D_{3+} & \text{if } c \geq 3 \end{array} \right.$$

$$P_{\mathbf{u}}^{\mathrm{HPY}}(w \mid \mathrm{seating \; arrangement}) = \frac{c_{\mathbf{u}w\cdot} - d_{|\mathbf{u}|}t_{\mathbf{u}w}}{\theta_{|\mathbf{u}|} + c_{\mathbf{u}\cdot\cdot}} + \frac{\theta_{|\mathbf{u}|} + d_{|\mathbf{u}|}t_{\mathbf{u}\cdot}}{\theta_{|\mathbf{u}|} + c_{\mathbf{u}\cdot\cdot}} P_{\pi(\mathbf{u})}^{\mathrm{HPY}}(w \mid \mathrm{seating \; arrangement})$$

- Assume that the strength parameters $\theta_{lul} = 0$ for all u
- Restrict t_{iiw} to be at most 1
 - all customers representing the same word token should only sit on the same table in each restaurant
- Interpret IKN as an approximate inference scheme for the HPYLM

Experiments

- Test five language models on APNews corpus:
 - Interpolated Kneser-Ney (IKN)
 - Modified Kneser-Ney (MKN)
 - Hierarchical Pitman-Yor Language Model (HPYLM)
 - Optimized HPYLM (HPYCV)
 - Hierarchical Dirichlet Language Model (HDLM)

Evaluated by Perplexites

— Train the *n*-Gram model:

$$p(w_i|w_{i-n+1}^{i-1})$$

– Calculate:

$$p(T) = \prod p(t_i)$$

– Cross-entropy:

$$H_p(T) = -\frac{1}{W_T} \log_2 p(T)$$

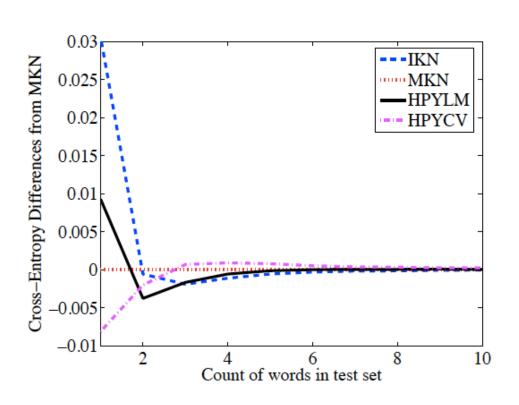
Perplexity:

$$PP_p(T) = 2^{H_p(T)}$$

Experimental Results I

T n	IKN	MKN	HPYLM	HPYCV	HDLM
2e6 3	148.8	144.1	145.7	144.3	191.2
4e6 3	137.1	132.7	134.3	132.7	172.7
6e6 3	130.6	126.7	127.9	126.4	162.3
8e6 3	125.9	122.3	123.2	121.9	154.7
10e6 3	122.0	118.6	119.4	118.2	148.7
12e6 3	119.0	115.8	116.5	115.4	144.0
14e6 3	116.7	113.6	114.3	113.2	140.5
14e6 2	169.9	169.2	169.6	169.3	180.6
14e6 4	106.1	102.4	103.8	101.9	136.6

Experimental Results II



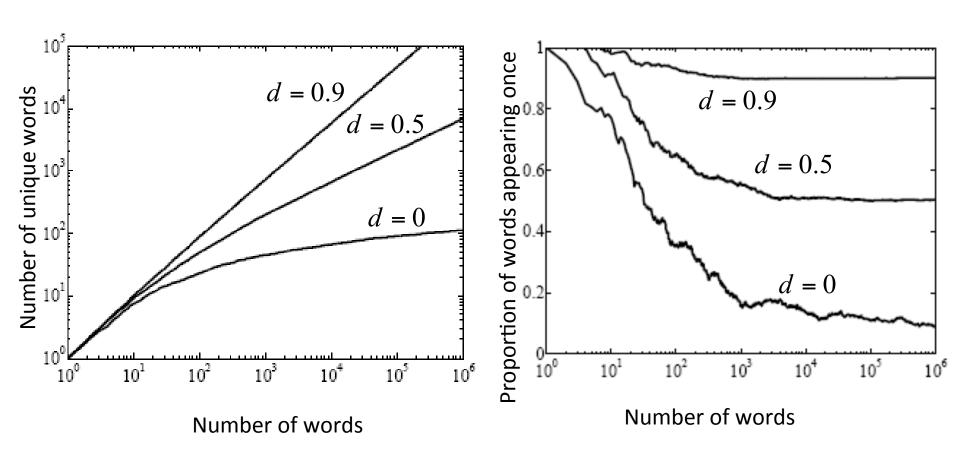
Conclusions

 Proposed a new language model based on the hierarchical Bayesian paradigm.

 Showed that Interpolated Kneser-Ney is approximate inference in the hierarchical Pitman-Yor language model.

QUESTIONS

Power-law properties of the Pitman-Yor Process



Experimental Results II

