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Language Model

e Given a sentence of t words:

word,,word,, ..., word;

 An n-gram LANGUAGE MODEL defines a probability
distribution over the current word, given the prior
n-1 words.

P(word;|word;_, 41, ..., word;_4)
* This sentence then can be typically represented by
the probability:

P(word,,word,, ...,word;) = [[;-, P(word;|word;_,+1, ..., word;_;)



Language Model (cont)
Consider a set vocabulary W with V word types

Each word w € W, and a context u:n-1 prior-word

— E.g. n=3, bayesian nonparametric model
u w

The vector of word probability estimates for n-grams:

Gu — [Gu(W)]WEW — [Gu(Wl); ---;Gu(Wv)]
Maximum Likelihood estimation:

P(word; = w|lword;_,+1, ..., word;_; = u)

_ ML (W) _ Cuw _ Cuw
- ZW’ Cuw’ Cu-




Smoothing

 Maximum Likelihood is expected to be a very
poor estimate given a realistic corpus size

— What about a trigram uw which has never
occurred in the training data
eje. GM(w) =0

* Smoothing is used to address this problem.

0 + Cyw
S|V |+ cy

Gyt (w) =



Back-off and Interpolated Smoothing

e Back-off approach:

— Only use lower-order model when data for higher- order
model is unavailable (i.e. count is zero).

[ Px(w, |w'l.) ifCwL.)>1
Pkat(wzl }Hl 1 S 1 v

a(wW' . OP,..(w |w . ) otherwise

* Interpolated approach:

— Linearly combine estimates of n-gram models of increasing
order.

P(w, | W, , W, )= 4PW, | W, , W, )+ LP(W, | W, )+ A4P(W,)
Where: Zﬂi =1



Bayesian Smoothing

Estimation
H
P(G,|D) «< P(D|G,)P(Gy)
Predictive Inference
P(word; = w|lword;_,+1, ..., word;_, = u,D) (r
- j P(wlw, G,)P(G,|D)dG,
Priors over distributions
G,~DP (6, ) i

G,~PY(d,0,H)

Inference is smoothed with respect to the distribution



Pitman-Yor Process

* Pitman-Yor Process
?y (d) 0) GO)

— d: discount parameter, 0 <d < 1
— 0. strength (concentration) parameter, 8 > -d

— G, base distribution
* Generalization of the Dirichlet process (d=0)

* Pitman-Yor processes produce distributions over words
given by a power law distribution

— [Goldwater et al 2006] investigated the Pitman-Yor process
from this perspective.



Pitman-Yor Process for
a unigram language model

e To estimate awordw € W,
— P(word; = wlword;_,4+1, ..., word;_; = u)
= P(word; =w) = G(w)

— G=[G (W)]WEW

« G~PY(,0,G,)
— d: discount parameter, 0 <d < 1
— 0: strength parameter, 8 > -d

— G,: a mean vector for unigram, using uniform
distribution over fixed vocabulary W of V words



Perspective by the Chinese restaurant process

e Easiest to understand them using Chinese restaurant
processes.

FEONO JORON®

¢, —d
0+ c

P(sit at an occupied table t;) =



Perspective by the Chinese restaurant process

e Easiest to understand them using Chinese restaurant
processes.

FEONO JONORS)

c, —d _ 0 +dt
i P(sit at new table) =
0+c 0+c

P(sit at an occupied table t;) =



Perspective by the Chinese restaurant process

* Given the seating arrangement S, the predictive
probability of a test word k is:

@
@
O @O @
O Q
® @

Cx — dtk 0 + dt.

P(xc.+1:k|5)= 0+ c +8+C

Go (k)



What about n-gram language model?

* Hierarchical Bayesian models

— Capture the dependencies by statistical strength
among different components of the language
model

— Specifically: hierarchical model based on the tree
of suffixes : CONTEXT TREES



Context Tree

* Basic assumption: words appearing later in a context are
more important

Yoo x xxooox in statistical machine [earm’ng. XXXXXX XX
X X XX. Bayesicm machine xxx xx. Xoxxx 1s a machine....

machine

PN
}

statistical machine a machine Bayesian machine




Hierarchical Bayesian Models on Context Tree
[MacKay and Peto 1994]

 The probability of the current word w following the
context u

P(word; = w|word;_n,41, ..., word;_, = u) = Gy, (W)

 The vector of word probability estimates for n-grams
Gu — [Gu(W)]WEW — [Gu (Wl); ---;Gu(Wv)]

* Tie related distribution together

Gu statistical machine D:P(B Grc(u) machme)
Gu statistical machine ?y(d H Gn(u) machme G@

N

machlne

LN,

Gstatlstlcal machine a machine Bayesian machine



Hierarchical Bayesian Models on Context Tree
[MacKay and Peto 1994]
* Tie related distribution together
Gstatistical machine ~DP (9; Gmachine)

Gstatistical machine N?y (d; 9; Gmachine)

— Observations in one context affect inference in other context.
— Statistical strength is shared between similar contexts
— E.g. Observe “statistical machine learning”

Gy
Gmachine / \

—-——
’—

Gstatistical machine Ga machine Bayesian machine



Hierarchical Pitman-Yor Process for
n-gram Language Models

e Use a Pitman-Yor process as the prior for each

node G,=[G,(W)] ,cw
° GuNfP,y (d|u|; Hlul' GTC(U))

Gy
Gstatistical machine N:Py (dZJ 92: Gmachine) / \

CJmabchine

< LN

Gstatistical machine Ga machine Bayesian machine



Perspective by the Chinese restaurant process
Q
m(u) o o
® o o
Q
Q
AOROXO
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e Q

d
P(sit at an occupied table k) = —=< _—1
( P ) 9|u| + cy,
0|u| + d|u|tu-

P(sit at a new table) = "
|u| u--



Perspective by the Chinese restaurant process
Q
O
. m(u) O o ©
@ . . |
Q
Q
o o ~ |
e Q

Crwywi — dln(u)|

P(sit at an occupied table i) = 9 p
|7 (u)] mw(u):

Ol T Anyitewy-

P(sit at a new table) = 7 "y
| () m(u)-



Hierarchical Pitman-Yor Process for
n-gram Language Models

* Given a particular seating arrangement,

P(w = learning | u = statistical machine)
Cuw- — d|u|tuw- Hlul + d|u|tu--

— + P(w = learning|m(u) = machine)
9|u| + ¢y 0|u| + Cy.-

S, seating arrangement in the / \

restaurant u S machine

N

S statistical machine a machine Bayesian machine



What’'s next? Inference

* Based on the framework for Hierarchical Pitman-
Yor Language Model, to get the probability over a
word w after a context u P(w|u) given training

data D:

p(wla, D) = /])(u']u.S. O)p(S.09|D)d(S,0)

— inference of seating arrangements S in each
restaurant

— estimation of the context-specific parameters ©®



Inference of Seating Arrangements

* Gibbs sampling is used to keep track of which
table each customer sits at

* Steps:

— |terative over all customers present in each
restaurant, resampling the table at which each
customer sits

* Randomly removing a customer from the restaurant

* Then resampling the table at which that customer sits



Estimation of the context parameters

* For a n-gram language model, there are 2n
parameters

O ={dn O0n:0<m<n-—1}

e Use the auxiliary variable sampling method,
assuming 6,~Gamma(ay, frn) dm~Beta(am, bm)

* Further details please find the technical report
[Teh, 2006]



The predictive probability:

* Approximate the integral with samples
{SW, Y. _. drawn from p(S, O/D):

(w|u, D) Zp wla, SY, W) /I



Interpolated Kneser-Ney (IKN) and Modified Kneser-Ney (MKN)

C C
ML _ uw _ uw
Pu (W) — ZW’ Cop! - Cy Modified Kneser-Ney (MKN) | ..
() ife=10
max(0, ¢y — d d) 1t Dic) = D, ife=1
PlIJKN(w) _ (0, Cuw |U|) 4 lulbu PE((E:I)(IU) (¢) D, ife=2
Cu. Cu. D;, ife>3

Cuw- — d|u|tuw 9|u| + d|u|tu.

PHPY (1 | seating arrangement) =
u -~
Olu| + Cu.- O + cu-

P;I(Ig(w | seating arrangement )

* Assume that the strength parameters ‘9/u/= Oforallu
* Restrictt,, to be at most 1
* all customers representing the same word token should only sit on the same
table in each restaurant

* Interpret IKN as an approximate inference scheme for the HPYLM

[Chen and Goodman. 1998. An empirical study of smoothing techniques for language modeling.



Experiments

Test five language models on APNews corpus:

— Interpolated Kneser-Ney (IKN)

— Modified Kneser-Ney (MKN)

— Hierarchical Pitman-Yor Language Model (HPYLM)
— Optimized HPYLM (HPYCV)

— Hierarchical Dirichlet Language Model (HDLM)

Evaluated by Perplexites

— Train the n-Gram model: | i—1
p(“’ri ‘?H-i;n—kl )

— Calculate:
alculate p(T) = H-p(t;-:)
— Cross-entropy: 1
Py Hy(T) = ~ 7~ log, p(T)

— Perplexity: PP, (T) = 2H»(T)



Experimental Results |

T n IKN MKN HPYLM HPYCV HDLM
2e6 3 | 1488 144.1 1457 1443 1912
4e6 3 | 137.1 132.7 1343 132.7 1727
6e6 3 | 130.6 126.7 1279 1264 1623
8e6 3 | 1259 1223 1232 1219 1547
10e6 3 | 1220 118.6 1194 118.2 148.7
12¢6 3 | 1190 1158 1165 1154 1440
14e6 3 | 1167 1136 1143 113.2 1405
14e6 2 | 1699 169.2 1696 1693 180.6
14e6 4 | 106.1 1024 1038 101.9 136.6




Experimental Results Il
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Conclusions

* Proposed a new language model based on the
hierarchical Bayesian paradigm.

 Showed that Interpolated Kneser-Ney is
approximate inference in the hierarchical

Pitman-Yor language model.



QUESTIONS



Power-law properties of the Pitman-Yor Process
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