A Stochastic Memoizer for Sequence Data

Wood, Archambeau, Gasthaus, James, and Teh

Presented by: Will Allen

October 27, 2011

Quick Note

» This paper builds on the Teh's 2006 ACL article on PYP for
language models presented on Tuesday.

» And relies on details about the coagulation and fragmentation
operators in Gasthaus and Teh's 2010 NIPS article presented
next.

» So I'll go over those topics relatively quickly and incompletely.

Main Idea

» Problem: Want to model sequences of symbols
x1.7 = (x1x2...x7) € L*, without making Markov
assumptions. (Preferably maintaining power-law symbol
occurrance statistics.)

» E.g.: Given some new symbol, x711, we'd like to find
p(xT41 = s|x1.7)Vs € L.
» This requires a large (infinite) number of latent variables.

» Solution: Use a tree data structure, and clever use of
marginalization, to efficiently represent a hierarchical
Pitman-Yor process prior over the predictive distribution.

Markov Models

» Normally, when modeling language, we make a Markov
assumption:

» Given sequence x1.7 = (x3x2...xT), for x; € ¥, where ¥ is a
set of symbols, assume each x; depends on the previous n
variables in the sequence:

-
p(x1.7) = HP(XI|X(i—n+1):i—1)
i=1
> As n gets larger, computational complexity grows and
probability of each n-gram occurring goes down, and
smoothing is required.

> In the paper we covered last class, Teh used a Pitman-Yor
process prior on the previous n words for Bayesian smoothing.

Non-Markov Model

v

What if we we let n grow with the length of the data?

v

Get a non-Markov model:

X1 T HP(X,|X1, 1

v

Each symbol is conditioned on every previous symbol.

» How do we actually compute this?

The Sequence Memoizer Model

» For each symbol s € ¥, and some context u, create a latent
variable G, = [Gy(S)]sex (a probability vector). (l.e.
Gu(s) = p(ur+1 = slur.7)).

> Let G = {Gpg}scx+ be the (infinite) set of all such probability
vectors for every possible sequence made from elements of .

> So p(x1.7,G) = p(G) [1,-; Gxy,_,(x;) for the particular
sequences we observe. Notice that this is recursive.

» But what is p(G)?

The Sequence Memoizer Model

v

Take G to be a Pitman-Yor process prior.

v

They set ¢, the concentration parameters, to always be 0.
Zach's paper covers the more general case.

v

With this choice, we can model the power-law properties of
language.

v

Will also use some nice marginalization properties later.

The Sequence Memoizer Model

In particular, the Sequence Memoizer model gives a distribution
over G = { Gy }uex+ using hierarchical Pitman-Yor process:

Gyldo, H ~ PY(dbo,0, H)
Glu]| Glo(u)] Al ~ PY(ds]; 0, Gl(uy)) Yu € T°

Xi!X1:i—1:U ~ G[u]

where o(u) means the suffix of context u (e.g. if u = abcd,
o(u) = bcd).

Encodes prior knowledge that contexts sharing suffixes will be
similar to each other, so later symbols in a context will be more
important in prediction.

The Sequence Memoizer Model: Infinite

This hierarchy can be viewed as an infinite tree (a context tree),
beginning at the empty root node, where each node has a branch
for each s € ¥. E.g. for ¥ ={0,1}:

Ge
Q l
Go G
Q 4 Q 4
Goo G Gor G
Qﬂ\/ >/ \» S/ \v» Qﬂ\/
o, O o, O

Gooo G100 Goiwo Giio Goor Gior Goir Gin

Source: Wood et al., " The Sequence Memoizer” CACM (2011).
The parent of node u is o(u), the longest proper suffix of that
node. (E.g. 110 is the longest proper suffix of 0110).

Prefix Trie: O(T?)

» When given a particular sequence (e.g. x = 0110), we can
integrate all of the nodes in the context tree not associated
with data in x. The resulting tree looks like a suffix trie.

> Every prefix is a path in the tree.

» Requires O(T?2) time and space to build this tree for a
sequence of length T.

» Intuition: One-to-one correspondence between nodes of suffix
trie and distinct substrings.

Prefix Tree: O(T)

» Obtained by compacting non branching, non leaf nodes.
» If we need those internal nodes, can recreate them.

» Better algorithm requires only O(T) time and space to build!
(At most 2T nodes.)

(c)
o
Q Y
Go Gl
Q %
Got
N
G(]ll

Source: Wood et al., " The Sequence Memoizer” CACM (2011).

Coagulation and Fragmentation

> Key concept: Compacting internal nodes of prefix trie <
marginalizing PYP.

» For certain parameter settings, chains of conditional PYP are
closed under marginalization.

» Theorem: If Gy|G; ~ PY(d1,0, G1) and
G3‘G2 ~ Py(dQ, 0, Gz), then G3‘G1 ~ Py(dldz, 0, Gl) with
G> marginalized out.

> Just multiply discount parameters along collapsed edge!

» Can also go backwards, to recreate G». Zach may go over this
in more detail, shortly.

Inference Algorithm: Posterior

Intractable to do exact inference in this model, so they use a Gibbs
sampler. Zach will probably cover this in his talk.

» Building the suffix tree for x gives the structure of a graphical
model.

» Traverse that tree, collecting parameters for a hierarchical
Pitman-Yor process.

» Instantiate a Chinese Restaurant Franchise representation of
the HPYP.

» Use Gibbs sampling to simulate the posterior distribution
conditioned on the observed sequence (as with any other
CRF).

Inference Algorithm: Prediction

» Given some context s not in the training set, and some next
symbol v, want to compute p(v|s, x).

> p(vls,x) = E[Gg(v)] = E[G¢)(v)], where " is the longest
suffix of s in the prefix trie.

» If s’ doesn’t appear in the prefix tree, can use fragmentation

to reinstate the corresponding restaurants into the model.

N(sv)—ds M(sv Jex dsiM(sv') Gy (v
- E[Gg(v)] = B [MM g 44 MCol1)] e

{N(s'v"), M(s'v'")} are random counts given some context s’
and symbol V'.

» Use samples from posterior distribution to approximate this
expectation.

Results

» On New York Times corpus and AP corpus

» Used CRF sampler with special Metropolis-Hastings updates
for discount parameters (because collapsed nodes have
products of discount parameters).

» Did really short burn-in (10 iterations) and collected 5
samples.

Results: Number of nodes in tree and number which
require sampling

2 x 10
—o—Total
—&— Require Sampling
1.5
[
[0
B 1
z
0.5
0 2 4 6 8 10 12 14

Observations x10°

Shown as function of number of New York Times observations.
Grows linearly with corpus size. Leaf nodes don’t require sampling.

Results: Nodes in prefix trees vs n-gram trie

3(107

3.8e+05)
1.9e+06
3.9e+06|
9.9e+06|
1.3e+07

|l+oxoo

Horizontal lines are tree counts, curved lines are trie counts.
Note: as amount of data grows, tree has about same number of
nodes as a 5-gram.

Results: Sequence Memoizer vs n-gram performance

150

350g :
: |—e—HPYP
i |-~ - c—gram
300
& 250
= :
[B
Q :
@ 200
= :
2 3 4 5 6 7

100
1

The Sequence Memoizer always below HPYP. Af n =5, HPYP
begins to have more nodes (by previous figure).

Results

—_
w
(=)

——HPYP

- @ - co—gram|

—_
n
(S}

- —_ -
-y -y ')
(=} a1 (=}

Test perplexity

-
o
[$))

—_
o
(=]

&
N

Training Observations x 10°

Using a 5-gram HPYP model. co-gram becomes better than
5-gram as dataset size increases.

Results

Source Perplexity
(Mnih & Hinton, 2009) 112.1
(Bengio et al., 2003) 109.0
4-gram Modified Kneser-Ney (Teh, 2006) 102.4
4-gram HPYP (Teh, 2006) 101.9
oo-gram (Sequence Memoizer) 96.9

Very good perplexity results!

Application: Compression

» Gasthaus J, Wood F, Teh YW. " Lossless compression based
on the Sequence Memoizer”. DCC (2010).

» Used the predictive ability of the SM to very efficiently
compress text.

» Developed an approximate incremental inference algorithm for
the SM.

Application: Compression

DEPLUMP ‘ PPM CTW
File Size || IPF | UKN | PPM* | PPMZ || CTW
bib 111261)/1.73| 1.72 | 191 | 1.74 | 1.83
bookl |768771|/2.17| 2.20 | 2.40 | 2.21 | 2.18
book2 |610856|1.83| 1.84 | 2.02 | 1.87 | 1.89
geo 102400 || 4.40 | 4.40 | 4.83 | 4.64 | 4.53
news |377109(2.20| 220 | 242 | 2.24 || 2.35
objl 21504 |3.64| 3.65 | 400 | 3.66 | 3.72
obj2 |246814|221| 2.19 | 243 | 223 | 2.40
paperl | 53161|221| 220 | 2.37 | 222 | 2.29
paper2 | 82199218 | 2.18 | 2.36 | 221 | 2.23
pic 513216 10.77| 0.82 | 0.85 | 0.76 | 0.80
proge | 39611|223| 2.21 | 240 | 225 | 2.33
progl 71646 |(1.44| 1.43 | 1.67 | 1.46 | 1.65
progp | 49379 1.44| 142 | 1.62 | 147 | 1.68
trans 93695|1.21| 1.20 | 1.45 | 1.23 | 1.44
avg. 212|212 | 2.34 | 2.16 | 2.24
w. avg. 1.89| 191 | 2.09 | 1.93 | 1.99

In average bits/byte.

Final Note

» All of the code for the Sequence Memoizer is available online
at www. sequencememoizer .com.

» There are C++ and Java implementations, and bindings to
Python and R.

