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Quick Note

I This paper builds on the Teh’s 2006 ACL article on PYP for
language models presented on Tuesday.

I And relies on details about the coagulation and fragmentation
operators in Gasthaus and Teh’s 2010 NIPS article presented
next.

I So I’ll go over those topics relatively quickly and incompletely.



Main Idea

I Problem: Want to model sequences of symbols
x1:T = (x1x2...xT ) ∈ Σ∗, without making Markov
assumptions. (Preferably maintaining power-law symbol
occurrance statistics.)

I E.g.: Given some new symbol, xT+1, we’d like to find
p(xT+1 = s|x1:T )∀s ∈ Σ.

I This requires a large (infinite) number of latent variables.

I Solution: Use a tree data structure, and clever use of
marginalization, to efficiently represent a hierarchical
Pitman-Yor process prior over the predictive distribution.



Markov Models

I Normally, when modeling language, we make a Markov
assumption:

I Given sequence x1:T = (x1x2...xT ), for xi ∈ Σ, where Σ is a
set of symbols, assume each xi depends on the previous n
variables in the sequence:

p(x1:T ) =
T∏

i=1

p(xi |x(i−n+1):i−1)

I As n gets larger, computational complexity grows and
probability of each n-gram occurring goes down, and
smoothing is required.

I In the paper we covered last class, Teh used a Pitman-Yor
process prior on the previous n words for Bayesian smoothing.



Non-Markov Model

I What if we we let n grow with the length of the data?

I Get a non-Markov model:

p(x1:T ) =
T∏

i=1

p(xi |x1:i−1)

I Each symbol is conditioned on every previous symbol.

I How do we actually compute this?



The Sequence Memoizer Model

I For each symbol s ∈ Σ, and some context u, create a latent
variable Gu = [Gu(s)]s∈Σ (a probability vector). (I.e.
Gu(s) = p(uT+1 = s|u1:T )).

I Let G = {G[s]}s∈Σ∗ be the (infinite) set of all such probability
vectors for every possible sequence made from elements of Σ.

I So p(x1:T ,G) = p(G)
∏T

i=1 Gx1:i−1(xi ) for the particular
sequences we observe. Notice that this is recursive.

I But what is p(G)?



The Sequence Memoizer Model

I Take G to be a Pitman-Yor process prior.

I They set c , the concentration parameters, to always be 0.
Zach’s paper covers the more general case.

I With this choice, we can model the power-law properties of
language.

I Will also use some nice marginalization properties later.



The Sequence Memoizer Model

In particular, the Sequence Memoizer model gives a distribution
over G = {Gu}u∈Σ∗ using hierarchical Pitman-Yor process:

G[]|d0,H ∼ PY(d0, 0,H)

G[u]|G[σ(u)], d[u] ∼ PY(d|s|, 0,G[σ(u)]) ∀u ∈ Σ+

xi |x1:i−1 = u ∼ G[u]

where σ(u) means the suffix of context u (e.g. if u = abcd ,
σ(u) = bcd).
Encodes prior knowledge that contexts sharing suffixes will be
similar to each other, so later symbols in a context will be more
important in prediction.



The Sequence Memoizer Model: Infinite

This hierarchy can be viewed as an infinite tree (a context tree),
beginning at the empty root node, where each node has a branch
for each s ∈ Σ. E.g. for Σ = {0, 1}:
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from zero, mitigating underestimation of their probability. 
We describe this effect as “stealing from the rich and giv-
ing to the poor.” This is precisely how the PYP manifests a 
power-law characteristic. If one thinks of the M(s)’s and a as 
parameters then one could imagine ways to set them to best 
describe the data. Intuitively this is not at all far from what is 
done, except that the M(s)’s and a are themselves treated in a 
Bayesian way, i.e., we average over them under the posterior 
distribution in Equation 3.

4.2. Context trees
We now return to making use of the contextual dependen-
cies in x and to estimating all of the conditional distribu-
tions Gu relevant to predicting symbols following a general 
context u. The assumption we make is that if two contexts 
are similar, then the corresponding conditional distribu-
tions over the symbols that follow those contexts will tend 
to be similar as well. A simple and natural way of defining 
similarity between contexts is that of overlapping contex-
tual suffixes. This is easy to see in a concrete example from 
language modeling. Consider the distribution over words 
that would follow u  �LQ�WKH�8QLWHG�6WDWHV RI. The assump-
tion we make is that this distribution will be similar to 
the distribution following the shorter context, WKH� 8QLWHG�
6WDWHV�RI, which we in turn expect to be similar to the distri-
bution following 8QLWHG�6WDWHV�RI. These contexts all share 
the same length three suffix.

In this section and the following one, we will discuss 
how this assumption can be codified using a hierarchical 
Bayesian model.8, 11 To start, we will only consider fixed, 
finite length contexts. When we do this we say that we are 
making an nth order Markov assumption. This means that 
each symbol only depends on the last n observed symbols. 
Note that this assumption dictates that distributions are 
not only similar but equal among contexts whose suffixes 
overlap in their last n symbols. This equality constraint is 
a strong assumption that we will relax in Section 5.

We can visualize the similarity assumption we make by con-
structing a context tree: Arrange the contexts u (and the associ-
ated distributions Gu) in a tree where the parent of a node u, 
denoted s(u), is given by its longest proper suffix (i.e.,  u with its 
first symbol from the left removed). Figure 2 gives an example 
of a context tree with n = 3 and S = {0,1}. Since for now we 

are making an nth order Markov assumption, it is sufficient 
to consider only the contexts u Î Su

* = {uc Î S*: |uc| ≤ n} of 
length at most n. The resulting context tree has height n and 
the total number of nodes in the tree grows exponentially in n. 
The memory complexity of models built on such context trees 
usually grows too large and too quickly for reasonable values 
of n and |S|. This makes it nearly impossible to estimate all of 
the distributions Gu in the naïve way described in Section 2. 
This estimation problem led us to hierarchical Bayesian mod-
eling using Pitman–Yor processes.

4.3. Hierarchical Pitman–Yor processes
Having defined a context tree and shown that the Pitman–
Yor prior over distributions exhibits power-law characteris-
tics, it remains to integrate the two.

Recall that G W  *3�(a, G0) means that G is a random distri-
bution with a PYP prior parameterized by a discount param-
eter a and a base distribution G0. The expected value of G 
under repeated draws from the PYP is the base distribution G0. 
Because of this fact we can use this process to encode any 
assumption that states that on average G should be similar 
to G0. To be clear, this is just a prior assumption. As always, 
observing data may lead to a change in our belief. We can 
use this mechanism to formalize the context tree notion of 
similarity. In particular, to encode the belief that Gu should 
be similar to Gs(u), we can use a PYP prior for Gu with base 
distribution Gs(u). We can apply the same mechanism at each 
node of the context tree, leading to the following model 
specification:

 Ge W  *3�(a0, G0) (4)

 Gu|Gs(u) 

W  *3�(a|u|, Gs(u)) for all u Î Sn
*\e 

xi|xi –n:i–1 = u, Gu W  Gu for i = 1, . . . , T

The second line says that a priori the conditional distribu-
tion Gu should be similar to Gs(u), its parent in the context 
tree. The variation of Gu around its mean Gs(u) is described 
by a PYP with a context length-dependent discount param-
eter a|u|. At the top of the tree the distribution Ge for the 
empty context e is similar to an overall base distribution 
G0, which specifies our prior belief that each symbol s will 
appear with probability G0(s). The third line describes the 
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Figure 2. (a) Full context tree containing all contexts up to length 3 over symbol set S = {0, 1}. (b) Context tree actually needed for the string 
����. Observations in the context in which they were observed are denoted in gray below the corresponding context. (c) Compact context tree 
for the same string, with non-branching chains marginalized out.

Source: Wood et al., ”The Sequence Memoizer” CACM (2011).

The parent of node u is σ(u), the longest proper suffix of that
node. (E.g. 110 is the longest proper suffix of 0110).



Prefix Trie: O(T 2)
I When given a particular sequence (e.g. x = 0110), we can

integrate all of the nodes in the context tree not associated
with data in x. The resulting tree looks like a suffix trie.

I Every prefix is a path in the tree.
I Requires O(T 2) time and space to build this tree for a

sequence of length T .
I Intuition: One-to-one correspondence between nodes of suffix

trie and distinct substrings.
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from zero, mitigating underestimation of their probability. 
We describe this effect as “stealing from the rich and giv-
ing to the poor.” This is precisely how the PYP manifests a 
power-law characteristic. If one thinks of the M(s)’s and a as 
parameters then one could imagine ways to set them to best 
describe the data. Intuitively this is not at all far from what is 
done, except that the M(s)’s and a are themselves treated in a 
Bayesian way, i.e., we average over them under the posterior 
distribution in Equation 3.

4.2. Context trees
We now return to making use of the contextual dependen-
cies in x and to estimating all of the conditional distribu-
tions Gu relevant to predicting symbols following a general 
context u. The assumption we make is that if two contexts 
are similar, then the corresponding conditional distribu-
tions over the symbols that follow those contexts will tend 
to be similar as well. A simple and natural way of defining 
similarity between contexts is that of overlapping contex-
tual suffixes. This is easy to see in a concrete example from 
language modeling. Consider the distribution over words 
that would follow u  �LQ�WKH�8QLWHG�6WDWHV RI. The assump-
tion we make is that this distribution will be similar to 
the distribution following the shorter context, WKH� 8QLWHG�
6WDWHV�RI, which we in turn expect to be similar to the distri-
bution following 8QLWHG�6WDWHV�RI. These contexts all share 
the same length three suffix.

In this section and the following one, we will discuss 
how this assumption can be codified using a hierarchical 
Bayesian model.8, 11 To start, we will only consider fixed, 
finite length contexts. When we do this we say that we are 
making an nth order Markov assumption. This means that 
each symbol only depends on the last n observed symbols. 
Note that this assumption dictates that distributions are 
not only similar but equal among contexts whose suffixes 
overlap in their last n symbols. This equality constraint is 
a strong assumption that we will relax in Section 5.

We can visualize the similarity assumption we make by con-
structing a context tree: Arrange the contexts u (and the associ-
ated distributions Gu) in a tree where the parent of a node u, 
denoted s(u), is given by its longest proper suffix (i.e.,  u with its 
first symbol from the left removed). Figure 2 gives an example 
of a context tree with n = 3 and S = {0,1}. Since for now we 

are making an nth order Markov assumption, it is sufficient 
to consider only the contexts u Î Su

* = {uc Î S*: |uc| ≤ n} of 
length at most n. The resulting context tree has height n and 
the total number of nodes in the tree grows exponentially in n. 
The memory complexity of models built on such context trees 
usually grows too large and too quickly for reasonable values 
of n and |S|. This makes it nearly impossible to estimate all of 
the distributions Gu in the naïve way described in Section 2. 
This estimation problem led us to hierarchical Bayesian mod-
eling using Pitman–Yor processes.

4.3. Hierarchical Pitman–Yor processes
Having defined a context tree and shown that the Pitman–
Yor prior over distributions exhibits power-law characteris-
tics, it remains to integrate the two.

Recall that G W  *3�(a, G0) means that G is a random distri-
bution with a PYP prior parameterized by a discount param-
eter a and a base distribution G0. The expected value of G 
under repeated draws from the PYP is the base distribution G0. 
Because of this fact we can use this process to encode any 
assumption that states that on average G should be similar 
to G0. To be clear, this is just a prior assumption. As always, 
observing data may lead to a change in our belief. We can 
use this mechanism to formalize the context tree notion of 
similarity. In particular, to encode the belief that Gu should 
be similar to Gs(u), we can use a PYP prior for Gu with base 
distribution Gs(u). We can apply the same mechanism at each 
node of the context tree, leading to the following model 
specification:

 Ge W  *3�(a0, G0) (4)

 Gu|Gs(u) 

W  *3�(a|u|, Gs(u)) for all u Î Sn
*\e 

xi|xi –n:i–1 = u, Gu W  Gu for i = 1, . . . , T

The second line says that a priori the conditional distribu-
tion Gu should be similar to Gs(u), its parent in the context 
tree. The variation of Gu around its mean Gs(u) is described 
by a PYP with a context length-dependent discount param-
eter a|u|. At the top of the tree the distribution Ge for the 
empty context e is similar to an overall base distribution 
G0, which specifies our prior belief that each symbol s will 
appear with probability G0(s). The third line describes the 
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Figure 2. (a) Full context tree containing all contexts up to length 3 over symbol set S = {0, 1}. (b) Context tree actually needed for the string 
����. Observations in the context in which they were observed are denoted in gray below the corresponding context. (c) Compact context tree 
for the same string, with non-branching chains marginalized out.

Source: Wood et al., ”The Sequence Memoizer” CACM (2011).



Prefix Tree: O(T )

I Obtained by compacting non branching, non leaf nodes.

I If we need those internal nodes, can recreate them.

I Better algorithm requires only O(T ) time and space to build!
(At most 2T nodes.)
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from zero, mitigating underestimation of their probability. 
We describe this effect as “stealing from the rich and giv-
ing to the poor.” This is precisely how the PYP manifests a 
power-law characteristic. If one thinks of the M(s)’s and a as 
parameters then one could imagine ways to set them to best 
describe the data. Intuitively this is not at all far from what is 
done, except that the M(s)’s and a are themselves treated in a 
Bayesian way, i.e., we average over them under the posterior 
distribution in Equation 3.

4.2. Context trees
We now return to making use of the contextual dependen-
cies in x and to estimating all of the conditional distribu-
tions Gu relevant to predicting symbols following a general 
context u. The assumption we make is that if two contexts 
are similar, then the corresponding conditional distribu-
tions over the symbols that follow those contexts will tend 
to be similar as well. A simple and natural way of defining 
similarity between contexts is that of overlapping contex-
tual suffixes. This is easy to see in a concrete example from 
language modeling. Consider the distribution over words 
that would follow u  �LQ�WKH�8QLWHG�6WDWHV RI. The assump-
tion we make is that this distribution will be similar to 
the distribution following the shorter context, WKH� 8QLWHG�
6WDWHV�RI, which we in turn expect to be similar to the distri-
bution following 8QLWHG�6WDWHV�RI. These contexts all share 
the same length three suffix.

In this section and the following one, we will discuss 
how this assumption can be codified using a hierarchical 
Bayesian model.8, 11 To start, we will only consider fixed, 
finite length contexts. When we do this we say that we are 
making an nth order Markov assumption. This means that 
each symbol only depends on the last n observed symbols. 
Note that this assumption dictates that distributions are 
not only similar but equal among contexts whose suffixes 
overlap in their last n symbols. This equality constraint is 
a strong assumption that we will relax in Section 5.

We can visualize the similarity assumption we make by con-
structing a context tree: Arrange the contexts u (and the associ-
ated distributions Gu) in a tree where the parent of a node u, 
denoted s(u), is given by its longest proper suffix (i.e.,  u with its 
first symbol from the left removed). Figure 2 gives an example 
of a context tree with n = 3 and S = {0,1}. Since for now we 

are making an nth order Markov assumption, it is sufficient 
to consider only the contexts u Î Su

* = {uc Î S*: |uc| ≤ n} of 
length at most n. The resulting context tree has height n and 
the total number of nodes in the tree grows exponentially in n. 
The memory complexity of models built on such context trees 
usually grows too large and too quickly for reasonable values 
of n and |S|. This makes it nearly impossible to estimate all of 
the distributions Gu in the naïve way described in Section 2. 
This estimation problem led us to hierarchical Bayesian mod-
eling using Pitman–Yor processes.

4.3. Hierarchical Pitman–Yor processes
Having defined a context tree and shown that the Pitman–
Yor prior over distributions exhibits power-law characteris-
tics, it remains to integrate the two.

Recall that G W  *3�(a, G0) means that G is a random distri-
bution with a PYP prior parameterized by a discount param-
eter a and a base distribution G0. The expected value of G 
under repeated draws from the PYP is the base distribution G0. 
Because of this fact we can use this process to encode any 
assumption that states that on average G should be similar 
to G0. To be clear, this is just a prior assumption. As always, 
observing data may lead to a change in our belief. We can 
use this mechanism to formalize the context tree notion of 
similarity. In particular, to encode the belief that Gu should 
be similar to Gs(u), we can use a PYP prior for Gu with base 
distribution Gs(u). We can apply the same mechanism at each 
node of the context tree, leading to the following model 
specification:

 Ge W  *3�(a0, G0) (4)

 Gu|Gs(u) 

W  *3�(a|u|, Gs(u)) for all u Î Sn
*\e 

xi|xi –n:i–1 = u, Gu W  Gu for i = 1, . . . , T

The second line says that a priori the conditional distribu-
tion Gu should be similar to Gs(u), its parent in the context 
tree. The variation of Gu around its mean Gs(u) is described 
by a PYP with a context length-dependent discount param-
eter a|u|. At the top of the tree the distribution Ge for the 
empty context e is similar to an overall base distribution 
G0, which specifies our prior belief that each symbol s will 
appear with probability G0(s). The third line describes the 
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Figure 2. (a) Full context tree containing all contexts up to length 3 over symbol set S = {0, 1}. (b) Context tree actually needed for the string 
����. Observations in the context in which they were observed are denoted in gray below the corresponding context. (c) Compact context tree 
for the same string, with non-branching chains marginalized out.

Source: Wood et al., ”The Sequence Memoizer” CACM (2011).



Coagulation and Fragmentation

I Key concept: Compacting internal nodes of prefix trie ⇔
marginalizing PYP.

I For certain parameter settings, chains of conditional PYP are
closed under marginalization.

I Theorem: If G2|G1 ∼ PY(d1, 0,G1) and
G3|G2 ∼ PY(d2, 0,G2), then G3|G1 ∼ PY(d1d2, 0,G1) with
G2 marginalized out.

I Just multiply discount parameters along collapsed edge!

I Can also go backwards, to recreate G2. Zach may go over this
in more detail, shortly.



Inference Algorithm: Posterior

Intractable to do exact inference in this model, so they use a Gibbs
sampler. Zach will probably cover this in his talk.

I Building the suffix tree for x gives the structure of a graphical
model.

I Traverse that tree, collecting parameters for a hierarchical
Pitman-Yor process.

I Instantiate a Chinese Restaurant Franchise representation of
the HPYP.

I Use Gibbs sampling to simulate the posterior distribution
conditioned on the observed sequence (as with any other
CRF).



Inference Algorithm: Prediction

I Given some context s not in the training set, and some next
symbol v , want to compute p(v |s, x).

I p(v |s, x) = E[G[s](v)] = E[G[s′](v)], where s′ is the longest
suffix of s in the prefix trie.

I If s′ doesn’t appear in the prefix tree, can use fragmentation
to reinstate the corresponding restaurants into the model.

I E[G[s](v)] = E
[
N(sv)−d|s|M(sv)+

∑
v′∈Σ d|s|M(sv ′)Gσ(s)(v)∑

v′∈Σ N(sv ′)

]
, where

{N(s′v ′),M(s′v ′)} are random counts given some context s ′

and symbol v ′.
I Use samples from posterior distribution to approximate this

expectation.



Results

I On New York Times corpus and AP corpus

I Used CRF sampler with special Metropolis-Hastings updates
for discount parameters (because collapsed nodes have
products of discount parameters).

I Did really short burn-in (10 iterations) and collected 5
samples.



Results: Number of nodes in tree and number which
require sampling

of the sequence memoizer compares favorably to a
Markov model with similar complexity.

To provide concrete answers to these questions we turn
to n-gram language modeling. Applying the sequence
memoizer in this application domain is equivalent to
letting n → ∞ in an n-gram HPYP language model.
For this reason we will refer to the sequence memoizer
as an ∞-gram HPYP in language modeling contexts.
For comparison, we used n-gram HPYPs with finite n
as state-of-the-art baselines (Teh, 2006). The sequence
of observations used as training data will be referred
to as the training corpus and the predictive power of
the models will be measured in terms of test corpus
perplexity.

The datasets used in our experiments were an excerpt
from the New York Times (NYT) corpus and the en-
tire Associated Press (AP) corpus. The latter cor-
pus is exactly the same as that used in (Bengio et al.,
2003; Teh, 2006; Mnih & Hinton, 2009), allowing us to
compare perplexity scores against other state-of-the-
art models. The AP training corpus (with 1 million
word validation set folded in) consisted of a total of
15 million words while the AP test corpus consisted of
1 million words. The AP dataset was preprocessed
to replace low frequency words (< 5 appearances)
with a single “unknown word” symbol, resulting in
17964 unique word types. This preprocessing is semi-
adversarial for the ∞-gram model because the num-
ber of unique prefixes in the data is lowered, resulting
in less computational savings for using the prefix tree
relative to the trie. The NYT training corpus con-
sisted of approximately 13 million words and had a
150,000 word vocabulary. The NYT test corpus con-
sisted of approximately 200,000 words. In this more
realistic dataset no preprocessing was done to replace
low frequency words. For this reason we used the NYT
dataset to characterize the computational savings of
using the prefix tree.

We used the CRF sampler outlined in Section 5 with
the addition of Metropolis-Hastings updates for the
discount parameters (Wood & Teh, 2009). The dis-
counts in the collapsed node restaurants are products
of subsets of discount parameters making other ap-
proaches difficult. We use distinct discount parame-
ters for each of the first four levels of the trie, while
levels below use a single shared discount parameter.
Theoretically the model can use different discounts for
every depth or node in the trie. Our choice in this
regard was somewhat arbitrary and warrants more
experimentation. The discounts were initialized to
d[0,1,2,...] = (.62, .69, .74, .80, .95, .95, . . .). We used ex-
tremely short burn-in (10 iterations) and collected only

Figure 3. Total number of nodes in the tree and number
of nodes that have to be sampled as a function of num-
ber of NYT observations. The number of nodes in the
corresponding trie scales quadratically in the number of
observations and is not shown. For reference the number
of nodes in the trie corresponding to the rightmost data
point is 8.2 × 1013.

5 samples. We found that this produced the same per-
plexity scores as a sampler using 125 burn-in iterations
and 175 samples (Teh, 2006), which indicates that the
posterior structure is simple and efficiently traversed
by our sampler. The CRF states were initialized such
that all customers of the same type in each restaurant
were seated at a single table. This initial configuration
corresponds to interpolated Kneser-Ney (Teh, 2006).

Figure 3 shows the number of nodes in prefix trees
growing linearly in the corpus size. We found that
the total number of nodes in the trie indeed grows
quadratically in the corpus size. We do not show this
quadratic growth in the figure because its scale is so
extreme. Instead, the figure also shows the number of
nodes that have to be sampled in the ∞-gram model,
which also grows linearly in the corpus size, albeit at
a lower rate. In the tree CRF representation none of
the leaf nodes need to be sampled because they all
will contain a single customer sitting at a single table,
thus the number of nodes that have to be sampled
is approximately the number of internal nodes in the
prefix tree.

While the growth rate of the trie graphical model is
quadratic, n-gram HPYP models do not instantiate
more nodes than are necessary to represent the unique
contexts in the training corpora. Figure 4 explores
the numbers of nodes created in n-gram and ∞-gram
HPYP language models, for differently sized NYT cor-
pora and for different values of n. The figure uncovers
two interesting fact. First, in all n-gram models the
growth in the number of nodes is intially quadratic and
then becomes linear. If the plot is extended to the right

Shown as function of number of New York Times observations.
Grows linearly with corpus size. Leaf nodes don’t require sampling.



Results: Nodes in prefix trees vs n-gram trie

Figure 4. Nodes in prefix tries and trees as a function of
n (of n-gram) and for different NYT corpora sizes. Hori-
zontal lines are prefix tree node counts. Curved lines are
prefix trie node counts. Sizes of corpora are given in the
legend.

Figure 5. NYT test perplexity for n-gram and ∞-gram
HPYP language models given a 4 million word subset of
the NYT training corpus. The dotted line indicates the
first n-gram model that has more nodes than the ∞-gram
model.

significantly beyond n = 6 we observe that this linear
growth continues for a long time. This transition be-
tween quadratic and linear growth can be explained
by observing that virtually all branch points of the
trie occur above a certain depth, and below this depth
only linear paths remain. Also, at n = 5 the num-
ber of nodes in the n-gram trie is roughly the same
(greater in all but one case) as the number of nodes in
the ∞-gram.

Questions of model size automatically lead to ques-
tions of the expressive power of the models. Figure 5
compares the expressive power of the n-gram HPYP
language model against the ∞-gram model, using the
test set perplexity as a proxy. We see that the predic-
tive performance of the n-gram HPYP asymptotically
approaching that of the ∞-gram. While the perfor-
mance gain over the n-gram model is modest, and cer-
tainly goes to zero as n increases, remember that the

Figure 6. AP test perplexity vs. AP training corpus size
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computational cost associated with the n-gram sur-
passes the ∞-gram after n = 5. This indicates that
there is no reason, computational or statistical, for pre-
ferring n-gram models over the ∞-gram when n ≥ 5.

In the next set of experiments we switch to using the
AP corpus instead. Figure 6 shows the test perplexi-
ties of both the 5-gram HPYP and the ∞-gram fit to
AP corpora of increasing size. For small training cor-
pora its performance is indistinguishable from that of
the ∞-gram. Furthermore, as the corpus size grows,
enough evidence about meaningful long contexts be-
gins to accrue to give the ∞-gram a slight relative
advantage. It bears repeating here that the AP cor-
pus is preprocessed in a way that will minimize this
advantage.

Finally, despite the AP corpus being semi-
adversarially preprocessed, the ∞-gram achieves
the best test perplexity of any language model we
know of that has been applied to the AP corpus.
Comparative results are given in Table 1. This
is somewhat surprising and worth further study.
Remember the trade-off between using the ∞-gram
vs. the n-gram HPYP: the n-gram HPYP allows for
non-zero concentrations at all levels, whereas the
∞-gram requires all concentrations to be set to zero.
Conversely, the advantage of the ∞-gram is that
it can utilize arbitrarily long contexts whereas the

Horizontal lines are tree counts, curved lines are trie counts.
Note: as amount of data grows, tree has about same number of
nodes as a 5-gram.
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The Sequence Memoizer always below HPYP. Af n = 5, HPYP
begins to have more nodes (by previous figure).
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Finally, despite the AP corpus being semi-
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Using a 5-gram HPYP model. ∞-gram becomes better than
5-gram as dataset size increases.
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Very good perplexity results!



Application: Compression

I Gasthaus J, Wood F, Teh YW. ”Lossless compression based
on the Sequence Memoizer”. DCC (2010).

I Used the predictive ability of the SM to very efficiently
compress text.

I Developed an approximate incremental inference algorithm for
the SM.



Application: Compression

DEPLUMP PPM CTW
File Size 1PF UKN PPM* PPMZ CTW
bib 111261 1.73 1.72 1.91 1.74 1.83
book1 768771 2.17 2.20 2.40 2.21 2.18
book2 610856 1.83 1.84 2.02 1.87 1.89
geo 102400 4.40 4.40 4.83 4.64 4.53
news 377109 2.20 2.20 2.42 2.24 2.35
obj1 21504 3.64 3.65 4.00 3.66 3.72
obj2 246814 2.21 2.19 2.43 2.23 2.40
paper1 53161 2.21 2.20 2.37 2.22 2.29
paper2 82199 2.18 2.18 2.36 2.21 2.23
pic 513216 0.77 0.82 0.85 0.76 0.80
progc 39611 2.23 2.21 2.40 2.25 2.33
progl 71646 1.44 1.43 1.67 1.46 1.65
progp 49379 1.44 1.42 1.62 1.47 1.68
trans 93695 1.21 1.20 1.45 1.23 1.44
avg. 2.12 2.12 2.34 2.16 2.24
w. avg. 1.89 1.91 2.09 1.93 1.99

Table 1: Compression performance in terms of average log-loss (average bits per character under
optimal entropy encoding) for the Calgary corpus. Boldface type indicates best performance.
Ties are resolved in favour of lowest computational complexity. The results for PPM* (PPM with
unbounded-length contexts) are copied from [3] and are actual compression rates, while the results
for PPMZ are average log-losses obtained using a modified version of PPMZ 9.1 under Linux [8]
(which differ slightly from the published compression rates). The results for CTW were taken from
[14].

well known compression benchmark corpus consisting of 14 files of different types and varying
lengths. The measure used for comparing the different algorithms is the average log-loss `(x1:N ) =
� 1

N

PN
i=1 log2 p(xi|x1:i�1) which corresponds to the average number of bits per symbol required

to encode the sequence using an optimal code. As entropy coding can achieve this limit up to a
small additive constant, it is virtually equivalent to the average number of bits per symbol required
by the compressed file. For all our experiments we treat the input files as sequences of bytes, i.e.
with a 256 alphabet size.2

The results are shown in Table 1. For comparison, we also show the results of two PPM variants
and one CTW variant in the final three columns. PPM* was the first PPM variant to use unbounded-
length context, and the results for PPM-Z are (to our knowledge) among the best published results
for a PPM variant on the Calgary corpus.

There are several observations that can be made here: first, the compression results for UKN,
and 1PF are comparable, with no consistent advantage for any single approach on all files. While

2In all experiments the per-level discount parameters were initialized to the values
d0:10 = (0.05, 0.7, 0.8, 0.82, 0.84, 0.88, 0.91, 0.92, 0.93, 0.94, 0.95) and d1 = 0.95 (chosen empirically). They were
then optimized by gradient ascent in the predictive probability, interleaved with the count updates. Additionally, in order
to overcome problems with the model becoming overconfident after long runs of the same symbol, predictions were
made using a mixture model, where the predictions from the leaf node in the tree are mixed with predictions from the
root (with a weight of 10�2 for the root). An alternative solution to the problem would be to pre-process the input using
run-length encoding.

In average bits/byte.



Final Note

I All of the code for the Sequence Memoizer is available online
at www.sequencememoizer.com.

I There are C++ and Java implementations, and bindings to
Python and R.


