Improvements to the Sequence Memoizer

Jan Gasthaus Yee Whye Teh

> Presented by Zachary Kahn

Overview

- Sequence Memoizer(SM) is based on Hierarchal Pitman-Yor Process(HPYP) with free parameters
 - SM as seen before sets these to 0, new model allows flexibility
- SM algorithms use Chinese Restaurant Franchise(CRF) representations for HPYP
 - Needs to store lists of customers at each table, lots of memory

Pitman-Yor Process Notation

- PY(α,d,G₀)=Pitman-Yor Process
 - Concentration parameter α >-d, discount parameter de[0,1), Base distribution G₀ over probability space Σ
- C customers indexed as [c]={1,...,c}
 - Seating arrangements are sets of disjoint nonempty subset partitioning of [c], e.g. {{1,3},{2}}
- A_c = set of seating arrangements for c customers, A_{ct} subset with exactly t tables

Probability Distributions

• New customers join table a with probability $\frac{|a|-d}{a+c}$ and start new table with probability $\frac{\alpha+|A|d}{a+c}$

$$P(A) = \frac{[\alpha + d]_d^{|A|-1}}{[\alpha + 1]_1^{c-1}} \prod_{a \in A} [1 - d]_1^{|a|-1} \quad \text{for each } A \in \mathcal{A}_c,$$
$$[y]_d^n = \prod_{i=0}^{n-1} y + id$$

• Fixing t≤c

$$P(A) = \frac{\prod_{a \in A} [1 - d]_1^{|a| - 1}}{S_d(c, t)} \quad S_d(c, t) = \sum_{A \in \mathcal{A}_{ct}} \prod_{a \in A} [1 - d]_1^{|a| - 1}$$

Inference

$$P(\{c_s, t_s, A_s\}, z_{1:c}) = \left(\prod_{s \in \Sigma} G_0(s)^{t_s}\right) \left(\frac{[\alpha + d]_d^{t.-1}}{[\alpha + 1]_1^{c.-1}} \prod_{s \in \Sigma} \prod_{a \in A_s} [1 - d]_1^{|a|-1}\right), \quad (3)$$

$$P(\{c_s, t_s\}, z_{1:c}) = \left(\prod_{s \in \Sigma} G_0(s)^{t_s}\right) \left(\frac{[\alpha + d]_d^{t.-1}}{[\alpha + 1]_1^{c.-1}} \prod_{s \in \Sigma} S_d(c_s, t_s)\right). \quad (4)$$

- $G^{PY}(\alpha, d, G_0) = z_1, ..., z_n | G^{G}$
- z_i=dish served at customer i's table
- $s \in \Sigma = a \operatorname{dish}$
- c_s=number z_i served dish s
- t_s=Number of tables served dish s.

Sequence Memoizer

- Σ =Set of symbols to model, Σ^* = Set of finite sequences from Σ
- G_u(s)=conditional probability of symbol s after context u.
- ε=empty string, sequence dropping first character in u

$$P(x_{1:T}) = \prod_{i=1}^{T} P(x_i | x_{1:i-1}) = \prod_{i=1}^{T} G_{x_{1:i-1}}(x_i),$$

$$G_{\varepsilon} \sim PY(\alpha_{\varepsilon}, d_{\varepsilon}, H)$$

$$G_{\mathbf{u}} | G_{\sigma(\mathbf{u})} \sim PY(\alpha_{\mathbf{u}}, d_{\mathbf{u}}, G_{\sigma(\mathbf{u})})$$
for $\mathbf{u} \in \Sigma^* \setminus \{\varepsilon\},$

$$(5)$$

Chinese Restaurant Franchise

- The hierarchy over {G_u} is represented with a CRF with each G_u is a restaurant indexed by u
 - Customers are draws from G_u , tables drawn from $G_{\sigma(u)}$ and dishes drawn from Σ
 - c_{us} and t_{us} are number of customers and tables in restaurant u served dish s with seating arrangement A_{us}

$$c_{\mathbf{u}s} = c_{\mathbf{u}s}^x + \sum_{\mathbf{v}:\sigma(\mathbf{v})=\mathbf{u}} t_{\mathbf{v}s},$$

 $c_{\mathbf{u}s}^x = 1$ if $s = x_i$ and $\mathbf{u} = x_{1:i-1}$ for some *i*, and 0 otherwise.

CRF Probabilities

$$P(\{c_{\mathbf{u}s}, t_{\mathbf{u}s}, A_{\mathbf{u}s}\}, x_{1:T}) = \left(\prod_{s \in \Sigma} H(s)^{t_{\varepsilon s}}\right) \prod_{\mathbf{u} \in \Sigma^*} \left(\frac{[\alpha_{\mathbf{u}} + d_{\mathbf{u}}]_{d_{\mathbf{u}}}^{t_{\mathbf{u}.}-1}}{[\alpha_{\mathbf{u}} + 1]_1^{c_{\mathbf{u}.}-1}} \prod_{s \in \Sigma} \prod_{a \in A_{\mathbf{u}s}} [1 - d_{\mathbf{u}}]_1^{|a|-1}\right).$$
(8)

$$P_{\mathbf{v}}^*(s) = \frac{c_{\mathbf{v}s} - t_{\mathbf{v}s}d}{\alpha_{\mathbf{v}} + c_{\mathbf{v}}} + \frac{\alpha_{\mathbf{v}} + t_{\mathbf{v}}d}{\alpha_{\mathbf{v}} + c_{\mathbf{v}}} P_{\sigma(\mathbf{v})}^*(s).$$
(9)

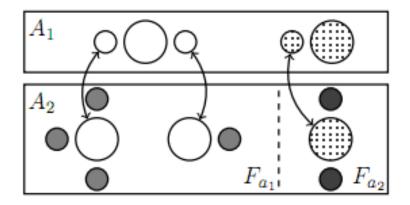
Nonzero Concentrations

- Previous models set $\alpha=0$
- We set $\alpha_{\epsilon} = \alpha > 0$, $\alpha_{u} = \alpha_{\sigma(u)} d_{u} > 0$
- This mitigates overconfidence by giving higher weights to predictive probabilities, giving less extreme values.

Coagulation and Fragmentation

- For c≥1, $A_2 \in A_c$ and $A_1 \in A_{|A2|}$ so |c| in $A_1 = |t|$ in A_2 .
- To coagulate, merge the tables in A₂ according to the customers in A₁ to make arrangement
 C. Then split A₂ into sections F_a for each table in C.
- To fragment, fragment each table in C into the smaller tables in F_a.

Coagulation and Fragmentation



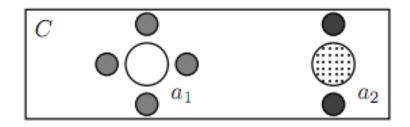


Figure 1: Illustration of the relationship between the restaurants A_1 , A_2 , C and F_a .

Coagulation and Fragmentation Preserved

Theorem 1 ([4, 5]). Suppose $A_2 \in \mathcal{A}_c$, $A_1 \in \mathcal{A}_{|A_2|}$, $C \in \mathcal{A}_c$ and $F_a \in \mathcal{A}_{|a|}$ for each $a \in C$ are related as above. Then the following describe equivalent distributions: (I) $A_2 \sim \operatorname{CRP}_c(\alpha d_2, d_2)$ and $A_1 | A_2 \sim \operatorname{CRP}_{|A_2|}(\alpha, d_1)$. (II) $C \sim \operatorname{CRP}_c(\alpha d_2, d_1 d_2)$ and $F_a | C \sim \operatorname{CRP}_{|a|}(-d_1 d_2, d_2)$ for each $a \in C$.

- Proof by math given in paper.
- We can marginalize out all but a linear number of PYPs, giving only a HPYP over prefixes and some ancestors.

Compact Representation

 To keep memory costs down, you typically only store # of customers, # of tables, and size of tables.

– Can still be too much.

 Instead, only store # of customers and tables, but not table sizes

$$P(\{c_{\mathbf{u}s}, t_{\mathbf{u}s}\}, x_{1:T}) = \left(\prod_{s \in \Sigma} H(s)^{t_{\varepsilon s}}\right) \prod_{\mathbf{u} \in \mathcal{U}} \left(\frac{[\alpha_{\mathbf{u}} + d_{\mathbf{u}}]_{d_{\mathbf{u}}}^{t_{\mathbf{u}}, -1}}{[\alpha_{\mathbf{u}} + 1]_{1}^{c_{\mathbf{u}}, -1}} \prod_{s \in \Sigma} S_{d_{\mathbf{u}}}(c_{\mathbf{u}s}, t_{\mathbf{u}s})\right)$$

Gibbs Sampling

$$P(t_{\mathbf{u}s}|\mathbf{rest}) \propto \frac{[\alpha_{\mathbf{u}} + d_{\mathbf{u}}]_{d_{\mathbf{u}}}^{t_{\mathbf{u}}, -1}}{[\alpha_{\sigma(\mathbf{u})} + 1]_{1}^{c_{\sigma(\mathbf{u})}, -1}} S_{d_{\mathbf{u}}}(c_{\mathbf{u}s}, t_{\mathbf{u}s}) S_{d_{\sigma(\mathbf{u})}}(c_{\sigma(\mathbf{u})s}, t_{\sigma(\mathbf{u})s}),$$
(11)

- t_u, c_{σ(u)}, and c_{σ(u)s} are depedent on t_{us} and c_{us} is determined from c^x_{us} and t_{vs} at child restaurants v so this sampler is sufficient.
- Only complication is calculating S.
 - If d is fixed, we can precompute (but takes lots of memory)
 - Can be updated in the sampling, but adds $O(c_{us}^2)$ per iteration

Re-instantiate Seating Arrangements

- Can alternatively sample a new seating arrangement given t_{us} and c_{us}, then perform Gibbs sampling for new t_{us}
- Doing so will change ancestor restaurants, so they also have to reinstantiate their arrangements
 - Will need to Depth First Search the restaurants, keeping arrangements in memory for all restaurants in the path
 - Has O(t_{us}c_{us}), but potentially lower constant

Re-instatiating A

 Re-express A using variables z_i=the # of tables occupied by first i customers, and y_i=label of customer i's table.

$$\begin{split} f(z_i, z_{i-1}) &= \begin{cases} i-1-z_i d & \text{if } z_i = z_{i-1}, \\ 1 & \text{if } z_i = z_{i-1}+1, \\ 0 & \text{otherwise.} \end{cases} P(z_{1:c}) = \frac{\prod_{i:z_i = z_{i-1}} (i-1-z_i d)}{S_d(c,t)}.\\ P(y_i | z_{1:c}, y_{1:i-1}) &= \begin{cases} 1 & \text{if } y_i = i \text{ and } z_i = z_{i-1}+1, \\ \frac{\sum_{j=1}^{i-1} \mathbf{1}(y_j = y_i) - d}{i-1-z_i d} & \text{if } z_i = z_{i-1} \text{ and } y_i \in [i-1]. \end{cases} \end{split}$$

 Multiplying above, P(z_{1:c}, y_{1:c})=P(A), so you can sample z_{1:C} then each y_i sequentially.

Original Gibbs Sampling

- Instead of updating all table info, just find the probability of gaining or losing a table
- Have to compute expensive S, but only for 1≤t≤t_{us} which will be smaller than c_{us}
- Still runs in O(t_{us}c_{us}), but now with a large constant for Stirling numbers.

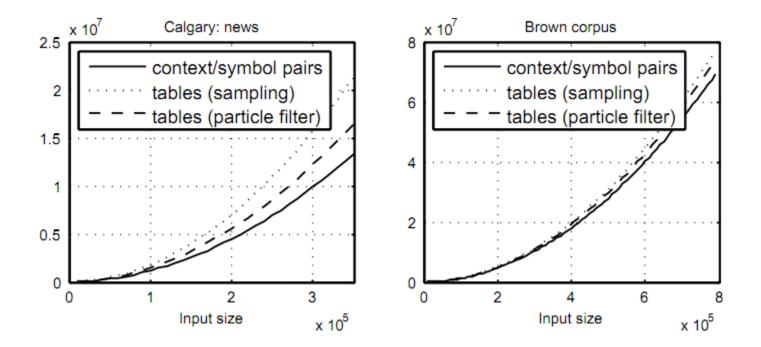
$$P(\text{decrement } t_{\mathbf{u}s}) = \frac{S_{d_{\mathbf{u}}}(c_{\mathbf{u}s} - 1, t_{\mathbf{u}s} - 1)}{S_{d_{\mathbf{u}}}(c_{\mathbf{u}s}, t_{\mathbf{u}s})}.$$
(12)

$$P(\text{increment } t_{\mathbf{u}s}) = \frac{(\alpha_{\mathbf{u}} + d_{\mathbf{u}}t_{\mathbf{u}\cdot})P^*_{\sigma(\mathbf{u})}(s)}{(\alpha_{\mathbf{u}} + d_{\mathbf{u}}t_{\mathbf{u}\cdot})P^*_{\sigma(\mathbf{u})}(s) + c_{\mathbf{u}s} - t_{\mathbf{u}s}d_{\mathbf{u}}},\tag{13}$$

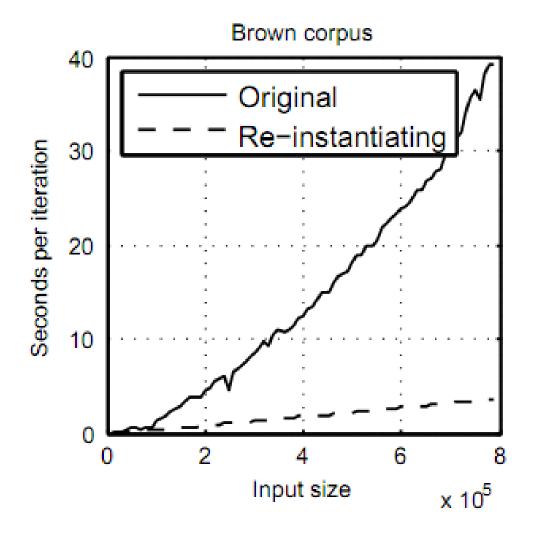
Particle Filtering

- Using the probabilities from before, we can make a Particle Filter
- At each iteration through the sequence x_{i:T}, add a new customer according to s=x_i, in the context u=x_{1:i-1}.

Experiments



Sampling time with Re-instantiation



Concentration Parameter Effects

α	Particle Filter only		Gibbs (1 sample)		Gibbs (50 samples averaged)		Online	
	Fragment	Parent	Fragment	Parent	Fragment	Parent	PF	Gibbs
0	8.45	8.41	8.44	8.41	8.43	8.39	8.04	8.04
1	8.41	8.39	8.40	8.39	8.39	8.38	8.01	8.01
3	8.37	8.37	8.37	8.37	8.35	8.35	7.98	7.98
10	8.33	8.34	8.33	8.33	8.32	8.32	7.95	7.94
20	8.32	8.33	8.32	8.32	8.31	8.31	7.94	7.94
50	8.32	8.33	8.31	8.32	8.31	8.31	7.95	7.95

Questions?