Slice Sampling Mixture Models

Maria Kalli, Jim E. Griffin, Stephen G. Walker Statistics and Computing, 2011

> presented by Paul Kernfeld + Libin Sun

Overview

- slice sampling (Neal 2003)
- slice sampling for MDP (Walker 2007)
- slice-efficient sampler for MDP
- mixtures based on normalized weights
 - \circ definition, properties
 - \circ samplers
- comparison of different samplers

Background: Slice Sampling

univariate case: $f_i(x_i) \propto p(x_i|x_{-i})$

draw y~Unif(0,f(x))
 draw x* from "slice"

Background: Slice Sampling

choosing the interval (Neal 2003):

1. stepping out a <u>-</u>₩-2. doubling **b** _ - e - - - - - --- - - -

Slice Sampling for MDP

big idea: introduce latent variable u, consider the joint f(y,u) and slicing over u

$$P = \sum_{j=1}^{\infty} w_j \delta_{\phi_j}, \qquad w_1 = v_1, \qquad w_j = v_j \prod_{l < j} (1 - v_l)$$
$$f_{v,\mu,\sigma^2}(y) = \sum_{j=1}^{\infty} w_j N(y;\mu_j,\sigma_j^2)$$
$$f_{v,\mu,\sigma^2}(y,u) = \sum_{j=1}^{\infty} \mathbf{1}(u < w_j) N(y;\mu_j,\sigma_j^2).$$

j=1

Slice Sampling for MDP

$$\begin{split} f_{v,\mu,\sigma^2}(y,u) &= \sum_{j=1}^{\infty} \mathbf{1}(u < w_j) \mathbf{N}(y;\mu_j,\sigma_j^2). \\ \text{marginal of u:} \quad f(u) &= \sum_{j=1}^{\infty} \mathbf{1}(u < w_j) \quad => \text{staircases} \\ \text{marginal of y:} \quad f_{v,\mu,\sigma^2}(y) &= \sum_{j=1}^{\infty} w_j \mathbf{N}(y;\mu_j,\sigma_j^2) \\ \text{conditional of y|u:} \quad f(y|u) &= \frac{f(y,u)}{f(u)} \quad ==> \text{ finite, equal weights} \end{split}$$

• is there a typo in the paper for N_u ?

Slice Sampling for MDP

latent variable *u* and *d*

- *u* to threshold *w*
- d is assignment variable (z)

$$f_{v,\mu,\sigma^2}(y,u,d) = \xi_d^{-1} \mathbf{1}(u < \xi_d) w_d \mathbf{N}(y;\mu_d,\sigma_d^2)$$

set \xi_d = w_d: Walker 2007, Dunson 2008, etc *u* and *w* correlated, slow mixing
simulate *w* when *u* changes

Slice-efficient Sampling for MDP

Axi: decreasing,
joint posterior:
$$\xi_j \propto \frac{E[w_j]}{1.5j}$$

$$p(\mu_j, \sigma_j, v_j, d_i, u_i | y) \propto \prod_{i=1}^n \mathbf{1}(u_i < \xi_{d_i}) w_{d_i} / \xi_{d_i} \mathbf{N}(y_i; \mu_{d_i}, \sigma_{d_i}^2).$$

$$1. \pi(\mu_j, \sigma_j^2 | \cdots) \propto p_0(\mu_j, \sigma_j^2) \prod_{d_i=j} \mathbf{N}(y_i; \mu_j, \sigma_j^2).$$

$$2. \pi(v_j) \propto \operatorname{Be}(v_j; a_j, b_j), \text{ where}$$

$$a_j = 1 + \sum_{i=1}^n \mathbf{1}(d_i = j)$$
and
$$b_j = M + \sum_{i=1}^n \mathbf{1}(d_i > j).$$

$$3. \pi(u_i | \cdots) \propto \mathbf{1}(0 < u_i < \xi_{d_i}).$$

$$4. \operatorname{P}(d_i = k | \cdots) \propto \mathbf{1}(k : \xi_k > u_i) w_k / \xi_k \mathbf{N}(y_i; \mu_k, \sigma_k^2).$$

Normalized Weights Mixtures

where:

$$\begin{aligned} f(y) &= \sum_{j=1}^{\infty} w_j K(y; \phi_j) \\ w_j &= \lambda_j / \Lambda, \ \Lambda = \sum_{j=1}^{\infty} \lambda_j \\ \Lambda_m &= \sum_{j=m+1}^{\infty} \lambda_j. \\ \lambda_j &\sim \pi_j(\lambda_j). \end{aligned}$$

subject to:
$$\sum_{j=1}^{\infty} \lambda_j < +\infty$$

suggested:

$$E(\lambda_j) = Mq_j$$
$$q_j = (1 - \theta)\theta^{j-1}.$$

Examples: Gamma

Examples: Inverse-Gaussian

Joint Density, now with v

 $f(y, v, u, d) = \exp(-v\Lambda)\mathbf{1}(u < \xi_d)\lambda_d/\xi_d K(y; \phi_d).$

Clearly the marginal density is

$$f(y,d) = \frac{\lambda_d}{\Lambda} K(y;\phi_d).$$

Likelihood after n samples

$\prod_{i=1}^{n} \exp(-v_i \Lambda) \mathbf{1}(u_i < \xi_{d_i}) \lambda_{d_i} / \xi_{d_i} K(y_i; \phi_{d_i}).$

$$v^{n-1}\exp(-v\Lambda)\prod_{i=1}^n \mathbf{1}(u_i < \xi_{d_i})\lambda_{d_i}/\xi_{d_i}K(y_i;\phi_{d_i}).$$

Simulating lambda's

$$\exp\{-v\Lambda_m\}\pi_m^{\star}(\Lambda_m)\prod_{j=1}^m\exp\{-v\lambda_j\}\lambda_j^{n_j}\pi_j(\lambda_j),$$

m is the # of atoms from the previous iteration

$$n_j = \sum_{i=1}^n \mathbf{1}(d_i = j)$$

for which $\Lambda_{m'} < \min_i \{u_i\}$

Finding weights > u_i

-

Need to find the smallest value of m'

for which $\Lambda_{m'} < \min_i \{u_i\}$

$$\begin{aligned} [\lambda_j &= x, \Lambda_j = \Lambda_{j-1} - x | \Lambda_{j-1}] \text{ is given by} \\ f(x) &\propto \pi_j(x) \pi_j^* (\Lambda_{j-1} - x), \\ 0 &< x < \Lambda_{j-1}. \end{aligned}$$

Dependent sampler

should this be K?

1.
$$\pi(\mu_j, \sigma_j^2 | \cdots) \propto p_0(\mu_j, \sigma_j^2) \prod_{d_i=j} N(y_i; \mu_j, \sigma_j^2).$$

- 2. $\pi(\lambda_j) \propto \lambda_j^{n_j} \exp\{-v\lambda_j\}$ and $\pi(\Lambda_m) \propto \exp\{-v\Lambda\} \times \pi^*(\Lambda_m)$.
 - 3. $\pi(u_i | \cdots) \propto \mathbf{1}(0 < u_i < \xi_{d_i})$. tricky to calculate
 - 4. $P(d_i = k | \cdots) \propto \mathbf{1}(k : \xi_k > u_i) w_k / \xi_k N(y_i; \mu_k, \sigma_k^2).$
- 5. *v* is Gamma distributed with shape parameter n 1 and mean $(n 1)/(\Lambda_m + \sum_{i=1}^m \lambda_i)$.

Condition distribution of v

$$\operatorname{E}[\exp\{-v\Lambda_m\}]v^{n-1}\exp\left\{-v\sum_{j=1}^m\lambda_j\right\}$$

Independent sampler

Results?

Generally agrees w/ established samplers Independent faster than dependent Best independent slice-efficient sampler "outperforms" retrospective sampler (on autocorrelation) Better startup time than retrospective sampler? Apparently retrospective samplers are difficult to implement?

Slightly worse integrated autocorrelation times than retrospective sampler Additional mystery parameter κ

Multipurpose bar graph

