The Infinite PCFG using Hierarchical Dirichlet
Processes
Liang, Petrov, Jordan & Klein

Presented by: Will Allen

November 8, 2011

Overview

No oA~ b=

Overview

(Very) Brief History of Context Free Grammars
Probabilistic Context Free Grammars (PCFG)
HDP-PCFG Model

HDP-PCFG for grammar refinement (HDP-PCFG-GR)
HDP-PCFG Variational Inference

Experimental Results

Overview

» Goal: To understanding the latent rules generating the
recursive structure of phrases and sentences in natural
language.

» Not just for NLP: PCFGs also used in bioinformatics (RNA
structure prediction), vision (geometric grammars), and
probably other places.

(Very) Brief History of Context Free Grammars

> 4th century BC: first description by Panini
of a grammar, a set of rules dictating the
order in which clauses and words appear.

» Grammars are tree-structured to model
recursive structure of natural language.

7 » 1950s: Noam Chomsky invents context
From: http://lavanddisorder . org/ free-grammar formally describing how to
generate these tree structures.

(Very) Brief History of Context Free Grammars

A parse tree:

Sentence
Noun-Phrase Verb-Phrase
Pror‘mun Verb Noun-Phrase Prepositional-Phrase
T/L(iy solved Dctcr‘mincr N 0‘1111 Preposition Noun-Phrase
the problem un‘?th Proper-Noun Plural-Noun
Baylsian statistics

From: Liang, P., Jordan, M.I., Klein, D. “Probabilistic Grammars and Hierarchical Dirichlet Processes.” (2009)

Book chapter: The Handbook of Applied Bayesian Analysis.

Probabilistic Context Free Grammars

Set of rules for generating parse trees.
A PCFG consists of:

» A set of terminal symbols ¥ (e.g. actual words)
» A set of nonterminal symbols S (e.g. word types)
» A root nonterminal symbol ROOT € S

> Rule probabilities ¢ = (¢s(7) :s € S,y € ZU(S x S) where
¢s(v) = 0 and }° ¢s(7) =1 (produce terminal symbols or
pairs of nonterminal symbols)

Context Free Grammars

Chomsky Normal Form is used in this paper:
» A— BC, A B, C € S (binary production)
» A— o, a € X (emission)
» ROOT — € (empty string)
where A — BC occurs with probability ¢a((B, C)).

HDP-PCFG Model

Previous work for learning PCFGs:
» Models have a fixed number symbols.

> Infer maximum-likelihood symbol transition and emission
probabilities by Expectation Maximization algorithm.

» Use pseudocounts for smoothing: may only have a few
training examples of each transition.

HDP-PCFG Model

» Goal: Learn how many grammar symbols to allocate given
data. Use these symbols to learn transition and emission
probabilities.

» Method: Use HDP to model syntactic tree structures.
Nonterminal nodes are symbols.

» Bonus: Develop model for grammar refinement: given a
coarse supervised annotation of tree structures, infer a richer
model by learning how many subsymbols to split from existing
symbols.

HDP-PCFG Model

» Using Chemosky Normal Form grammar, so only has
emissions or binary productions.

» Each grammar symbol is a mixture component. Use DP prior
to let number of grammar symbols — oco.

HDP-PCFG Model

HDP-PCFG

B ~ GEM(«) [draw top-level symbol weights]
For each grammar symbol z € {1,2,... }:

¢ ~ Dirichlet(a™) [draw rule type parameters]

$F ~ Dirichlet(a”) [draw emission parameters]

#? ~ DP(a®, 387) [draw binary production parameters)
For each node 7 in the parse tree:

t; ~ Multinomial(quTi) [choose rule type]

If t; = EMISSION:

x; ~ Multinomial (¢%)) [emit terminal symbol]

If t; = BINARY-PRODUCTION:
(zL(i)s ZR(3)) ~ Multinomial(qﬁi) [generate children symbols]

HDP-PCFG Model

Key points:

>

>

Symbols are derived from global stick-breaking prior 3

DP(a®, 88T gives a distribution over pairs of symbols for
each symbol.

Unlike in HDP-HMM, either binary production or emission
chosen. qﬁzT is distribution over type of rule to apply (2 types
for CNF).

Although use Dirichlet/Multinomial for emission distribution
for NLP, could use more general base measure to get different
emission distribution.

HDP-PCFG Model

Graphical model of fixed tree

(not showing hyperparameters a,a”, of, aB):

¢J

T

~
© 9

Parameters

Trees

HDP-PCFG Model

Distribution over pairs of child symbols:

prcen@ | 110,
state

left child state

T [’ '.- B
ﬂﬁ 1 1" - .-
I ||
I n I ™ - n
right child state
left child state
¢? ~ DP(BB" Lo

right child state

HDP-PCFG for Grammar Refinement

» Want to refine existing, human-created grammar.

> Are given a set of symbols. Want to allocate some number of
subsymbols for each symbol.

> Idea is to better capture subtleties in types of grammatical
objects (e.g. different types of noun phrases)

HDP-PCFG for Grammar Refinement

HDP-PCFG for grammar refinement (HDP-PCFG-GR)
For each symbol s € S:

B, ~ GEM(«) [draw subsymbol weights]
For each subsymbol z € {1,2,...}:
¢TI, ~ Dirichlet(a”) [draw rule type parameters]
¢E. ~ Dirichlet(a”(s)) [draw emission parameters]
<. ~ Dirichlet(a") [unary symbol productions]
@b, ~ Dirichlet(a®) [binary symbol productions]
For each child symbol s" € S:
oV ~DP(Y,B,,) [unary subsymbol prod.]

For each pair of children symbols (s, s”) € S x S:
oL . ~DP(P,8,.8%) [binary subsymbol]

For each node i in the parse tree:

t; ~ Multinomial(¢;, .,) [choose rule type]
If t; = EMISSION:)
z; ~ Multinomial(¢¥ ,,) [emit terminal symbol]

If t; = UNARY-PRODUCTION:
Sr(i) ~ Multinomial(¢y,.,) [generate child symbol]
2L(i) ~ Multinomial(q&suizﬁu”) [child subsymbol]
If t; = BINARY-PRODUCTION:
(sL(i)> Sr(:)) ~ Mult(¢s,2;) [children symbols]
(z10), () ~ MUI(OF 2. o) any) [subsymbols]

HDP-PCFG for Grammar Refinement

Key points:

1. Similar to previous model, but for each symbol s € S. Creates
distribution over symbol/subsymbol pairs (s;, z;).

2. Included unary productions (equivalent of state transition in
HMM).

3. Since annotated symbols have child symbols already, have to
have distribution over child symbols and subsymbols.

HDP-PCFG Variational Inference

» The authors chose to use variational inference to avoid having
to deal with covergence and sample aggregation.

» Adapts existing efficient EM algorithm for PCFG refinement
and induction.

» EM algorithm uses Markov structure of parse tree to do
dynamic programming in E-step.

HDP-PCFG Variational Inference

» Recall: variational methods approximate posterior p(¢, z|x)
with
g = argmin KIL(q(0,2)||p(6, |x))
qeQ

> In this case: 6 = (53,)
» [= top-level symbol probabilities
> ¢ = rule probabilities
» z = training parse trees
» x = observed sentences

HDP-PCFG Variational Inference

They use a structured mean-field approxmation. l.e. only look at
distributions of the form

K
Q= {q q(2)a(8) [[q(¢1)q(¢f)q(¢f)}
z=1

where q(¢7), q(¢E), q(¢2) are Dirichlet, g(z) is multinomial, g(3)
is a degenerate distribution truncated at K (8, = 0 if z > K)).

HDP-PCFG Variational Inference

Factorized model g = q(5)q(¢)q(z):

Ao

o

Parameters Trees

HDP-PCFG Variational Inference

» Optimization of g* is intractable, but can use
coordinate-ascent algorithm similar to EM.

» Optimize one factor at a time while keeping other factors
constant

HDP-PCFG Variational Inference

Parse trees q(z)
> Uses inside-out algorithm with unnormalized rule weights
W(r): dynamic programming algorithm similar to
forward-backward for HMMs
» Then computes expected sufficient statistics, rule counts C(r):
of binary productions C(z — zz,) and emissions C(z — x).

HDP-PCFG Variational Inference

Rule probabilities q(¢)
» Update Dirichlet posteriors: C(r) + pseudocounts

» Compute rule weights: Compute multinomial weights

eW(C(z—)z,z,)+o¢Bﬁz,,Bz,)

WZB(Zla Zr) = exp Eq[log QSZB(ZI, Zr)] = e\u(C(Za**)JraB)
eV (prior(r)+C(r))
ew(z,/ Prior(r/)+c(r,,))

where exp W(+) increases the weight of large counts and
decrease the weight of small counts (as in DP).

» Similar for emission distributions.

HDP-PCFG Variational Inference

Top-level symbol probabilities q(3):

» Truncate at level K. q(83) = d3-(f) so trying to find single
best 8*. Use gradient projection method to find:

argmax L(5*) = log GEM(5*; @)
5*

K
+ " Egllog Dirichlet(¢5; a8+ 7)].

z=1

Results

Recovering synthetic grammar:

S = XiXy | XoXy | X3X3 | XyXy S
X1—>a1 \bl\cl ‘dl
Xy = ag|by]ca|ds Xi/\Xz‘

X3 —ag|bz|cs|d; | |
Xy — ay ‘ by ‘ s ‘ dy {divb'i«,ci«,dz} {aubiaciadz}

u— |

00 I s 17 1 S 0T T W

standard P(FG HDP-PCFG

Generate 2000 trees, with terminal symbols having same /, then
replace X; with X.

Results

2 precisionxrecall

» Empirical results measured by F; = Srecision Trecall -
» Uses labeled brackets to represent the tree:
LB(S) = {(S[i,j]7 [I,_j]) 5[] 7é NON-NODE, 1 < i <j < n}
.~ t LB(s)NLB(s'
» precision(s,s’) = Ié‘;:iid = | |(33(s/)|(5)|
AN # correct _ |LB(s)NLB(s")]
> reca“(s’ S) " # should have returned — [LB(s)]

> s is true parse tree, s’ is predicted.

Results

Applied to one section (WSJ) of Penn Treebank (corpus of parsed
sentences), preprocessed so fit CNF:

K PCFG PCFG (smoothed) HDP-PCFG
Fy Size Fy Size Fy Size
1 60.47 | 2558 | 60.36 2597 60.5 2557
2 || 69.53 | 3788 | 69.38 4614 71.08 | 4264
4 11 7598 | 3141 | 77.11 12436 77.17 | 9710
8 || 74.32 | 4262 | 79.26 120598 | 79.15 | 50629
12 || 70.99 | 7297 | 78.8 160403 | 78.94 | 86386
16 || 66.99 | 19616 | 79.2 261444 | 78.24 | 131377
20 || 64.44 | 27593 | 79.27 | 369699 | 77.81 | 202767

Recap

Main contributions:

» Used HDP prior to allow Chomsky Normal Form PCFG to
learn the number of symbols in a grammar while also learning
the rule transition and emission probabilities.

» Developed an efficient variational methods for inference,
similar to existing EM algorithms for PCFG.

» Can be extended to model other kinds of context free
grammars.

Possible problems:
» Variational methods only finds local maxima?

» Anything else?

