The Infinite PCFG using Hierarchical Dirichlet Processes

Liang, Petrov, Jordan & Klein

Presented by: Will Allen

November 8, 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Overview

- 1. Overview
- 2. (Very) Brief History of Context Free Grammars
- 3. Probabilistic Context Free Grammars (PCFG)
- 4. HDP-PCFG Model
- 5. HDP-PCFG for grammar refinement (HDP-PCFG-GR)

- 6. HDP-PCFG Variational Inference
- 7. Experimental Results

Overview

- Goal: To understanding the latent rules generating the recursive structure of phrases and sentences in natural language.
- Not just for NLP: PCFGs also used in bioinformatics (RNA structure prediction), vision (geometric grammars), and probably other places.

(Very) Brief History of Context Free Grammars

From: http://lawanddisorder.org/

- 4th century BC: first description by Pānini of a grammar, a set of rules dictating the order in which clauses and words appear.
- Grammars are tree-structured to model recursive structure of natural language.
- 1950s: Noam Chomsky invents context free-grammar formally describing how to generate these tree structures.

(Very) Brief History of Context Free Grammars

A parse tree:

From: Liang, P., Jordan, M.I., Klein, D. "Probabilistic Grammars and Hierarchical Dirichlet Processes." (2009) Book chapter: The Handbook of Applied Bayesian Analysis.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Probabilistic Context Free Grammars

Set of rules for generating parse trees. A PCFG consists of:

- A set of *terminal symbols* Σ (e.g. actual words)
- ► A set of *nonterminal symbols S* (e.g. word types)
- A root nonterminal symbol $\operatorname{Root} \in S$
- Rule probabilities φ = (φ_s(γ) : s ∈ S, γ ∈ Σ ∪ (S × S) where φ_s(γ) ≥ 0 and ∑_γ φ_s(γ) = 1 (produce terminal symbols or pairs of nonterminal symbols)

Context Free Grammars

Chomsky Normal Form is used in this paper:

- $A \rightarrow BC, A, B, C \in S$ (binary production)
- $A \rightarrow \alpha, \ \alpha \in \Sigma$ (emission)
- ROOT $\rightarrow \epsilon$ (empty string)

where $A \rightarrow BC$ occurs with probability $\phi_A((B, C))$.

Previous work for learning PCFGs:

- Models have a fixed number symbols.
- Infer maximum-likelihood symbol transition and emission probabilities by Expectation Maximization algorithm.
- Use pseudocounts for smoothing: may only have a few training examples of each transition.

- Goal: Learn how many grammar symbols to allocate given data. Use these symbols to learn transition and emission probabilities.
- Method: Use HDP to model syntactic tree structures. Nonterminal nodes are symbols.
- Bonus: Develop model for grammar refinement: given a coarse supervised annotation of tree structures, infer a richer model by learning how many subsymbols to split from existing symbols.

- Using Chemosky Normal Form grammar, so only has emissions or binary productions.
- ► Each grammar symbol is a mixture component. Use DP prior to let number of grammar symbols → ∞.

Key points:

- \blacktriangleright Symbols are derived from global stick-breaking prior β
- DP(α^B, ββ^T) gives a distribution over pairs of symbols for each symbol.
- Unlike in HDP-HMM, either binary production or emission chosen. ϕ_z^T is distribution over type of rule to apply (2 types for CNF).
- Although use Dirichlet/Multinomial for emission distribution for NLP, could use more general base measure to get different emission distribution.

Graphical model of fixed tree (not showing hyperparameters $\alpha, \alpha^T, \alpha^E, \alpha^B$):

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Distribution over pairs of child symbols:

- ▲ロト ▲圖ト ▲画ト ▲画ト 三回 - わんぐ

HDP-PCFG for Grammar Refinement

- Want to refine existing, human-created grammar.
- Are given a set of symbols. Want to allocate some number of subsymbols for each symbol.

 Idea is to better capture subtleties in types of grammatical objects (e.g. different types of noun phrases)

HDP-PCFG for Grammar Refinement

HDP-PCFG for grammar refinement (HDP-PCFG-GR) For each symbol $s \in S$: $\boldsymbol{\beta}_{s} \sim \text{GEM}(\alpha)$ [draw subsymbol weights] For each subsymbol $z \in \{1, 2, \dots\}$: $\phi_{sz}^T \sim \text{Dirichlet}(\alpha^T)$ [draw rule type parameters] $\phi_{sz}^E \sim \text{Dirichlet}(\alpha^E(s))$ [draw emission parameters] $\phi_{sz}^{u} \sim \text{Dirichlet}(\alpha^{u})$ [unary symbol productions] $\phi_{sz}^b \sim \text{Dirichlet}(\alpha^b)$ [binary symbol productions] For each child symbol $s' \in S$: $\phi^U_{aaa'} \sim \mathrm{DP}(\alpha^U, \beta_{a'})$ [unary subsymbol prod.] For each pair of children symbols $(s', s'') \in S \times S$: $\phi^B_{a,a',a''} \sim \text{DP}(\alpha^B, \beta_{a'}\beta^T_{a''})$ [binary subsymbol] For each node *i* in the parse tree: $t_i \sim \text{Multinomial}(\phi_{s_i z_i}^T)$ [choose rule type] If $t_i = \text{EMISSION}$: $x_i \sim \text{Multinomial}(\phi_{s_i z_i}^E)$ [emit terminal symbol] If $t_i = \text{UNARY-PRODUCTION}$: $s_{L(i)} \sim \text{Multinomial}(\phi^u_{s_i z_i})$ [generate child symbol] $z_{L(i)} \sim \text{Multinomial}(\phi^U_{s_i z_i s_{L(i)}})$ [child subsymbol] If $t_i = BINARY-PRODUCTION$: $(s_{L(i)}, s_{R(i)}) \sim \operatorname{Mult}(\phi_{s_i z_i})$ [children symbols] $(z_{L(i)}, z_{R(i)}) \sim \operatorname{Mult}(\phi^B_{s_i z_i s_{L(i)} s_{R(i)}})$ [subsymbols]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

HDP-PCFG for Grammar Refinement

Key points:

- 1. Similar to previous model, but for each symbol $s \in S$. Creates distribution over symbol/subsymbol pairs (s_i, z_i) .
- 2. Included unary productions (equivalent of state transition in HMM).
- 3. Since annotated symbols have child symbols already, have to have distribution over child symbols and subsymbols.

- The authors chose to use variational inference to avoid having to deal with covergence and sample aggregation.
- Adapts existing efficient EM algorithm for PCFG refinement and induction.

 EM algorithm uses Markov structure of parse tree to do dynamic programming in E-step.

 Recall: variational methods approximate posterior p(θ, z|x) with

$$q^* = \operatorname*{arg\,min}_{q \in Q} \mathbb{KL}(q(heta, \mathbf{z}) || p(heta, \mathbf{z} | \mathbf{x}))$$

- In this case: $\theta = (\beta, \phi)$
 - $\beta =$ top-level symbol probabilities
 - ϕ = rule probabilities
 - > z = training parse trees
 - x = observed sentences

They use a *structured mean-field approxmation*. I.e. only look at distributions of the form

$$Q \equiv \left\{ q: q(\mathbf{z})q(\beta) \prod_{z=1}^{K} q(\phi_{z}^{T})q(\phi_{z}^{E})q(\phi_{z}^{B}) \right\}$$

where $q(\phi_z^T)$, $q(\phi_z^E)$, $q(\phi_z^B)$ are Dirichlet, q(z) is multinomial, $q(\beta)$ is a degenerate distribution truncated at K ($\beta_z = 0$ if z > K).

Factorized model $q = q(\beta)q(\phi)q(z)$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Optimization of q* is intractable, but can use coordinate-ascent algorithm similar to EM.
- Optimize one factor at a time while keeping other factors constant

Parse trees $q(\mathbf{z})$

- Uses inside-out algorithm with unnormalized rule weights W(r): dynamic programming algorithm similar to forward-backward for HMMs
- ▶ Then computes expected sufficient statistics, rule counts C(r): of binary productions $C(z \rightarrow z_l z_r)$ and emissions $C(z \rightarrow x)$.

Rule probabilities $q(\phi)$

- Update Dirichlet posteriors: C(r) + pseudocounts
- Compute rule weights: Compute multinomial weights

$$W_z^B(z_l, z_r) = \exp \mathbf{E}_q[\log \phi_z^B(z_l, z_r)] = \frac{e^{\Psi(C(z \to z_l z_r) + \alpha^B \beta_{z_l} \beta_{z_r})}}{e^{\Psi(C(z \to **) + \alpha^B)}}$$
$$= \frac{e^{\Psi(\text{prior}(r) + C(r))}}{e^{\Psi(\sum_{r'} \text{prior}(r') + C(r''))}}$$

where $\exp \Psi(\cdot)$ increases the weight of large counts and decrease the weight of small counts (as in DP).

Similar for emission distributions.

Top-level symbol probabilities $q(\beta)$:

► Truncate at level K. q(β) = δ_{β*}(β) so trying to find single best β*. Use gradient projection method to find:

$$\begin{aligned} \underset{\beta^*}{\arg \max L(\beta^*)} &= \log \mathsf{GEM}(\beta^*; \alpha) \\ &+ \sum_{z=1}^{K} \mathsf{E}_q[\log \mathsf{Dirichlet}(\phi_z^B; \alpha^B \beta^* \beta^{*T})]. \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Results

Recovering synthetic grammar:

Generate 2000 trees, with terminal symbols having same i, then replace X_i with X.

Results

- Empirical results measured by F₁ = 2 precision*recall precision+recall.
- ► Uses labeled brackets to represent the tree: LB(s) = {(s_[i,j], [i,j]) : s_[i,j] ≠ NON-NODE, 1 ≤ i ≤ j ≤ n}

• precision
$$(s, s') = \frac{\# \text{ correct}}{\# \text{ returned}} = \frac{|LB(s) \cap LB(s')|}{|LB(s')|}$$

► recall(
$$s, s'$$
) = $\frac{\# \text{ correct}}{\# \text{ should have returned}} = \frac{|LB(s) \cap LB(s')|}{|LB(s)|}$

► *s* is true parse tree, *s'* is predicted.

Results

Applied to one section (WSJ) of Penn Treebank (corpus of parsed sentences), preprocessed so fit CNF:

K	PCFG		PCFG (smoothed)		HDP-PCFG	
	F ₁	Size	F_1	Size	F_1	Size
1	60.47	2558	60.36	2597	60.5	2557
2	69.53	3788	69.38	4614	71.08	4264
4	75.98	3141	77.11	12436	77.17	9710
8	74.32	4262	79.26	120598	79.15	50629
12	70.99	7297	78.8	160403	78.94	86386
16	66.99	19616	79.2	261444	78.24	131377
20	64.44	27593	79.27	369699	77.81	202767

Recap

Main contributions:

 Used HDP prior to allow Chomsky Normal Form PCFG to learn the number of symbols in a grammar while also learning the rule transition and emission probabilities.

- Developed an efficient variational methods for inference, similar to existing EM algorithms for PCFG.
- Can be extended to model other kinds of context free grammars.

Possible problems:

- Variational methods only finds local maxima?
- Anything else?