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Overview

I Goal: To understanding the latent rules generating the
recursive structure of phrases and sentences in natural
language.

I Not just for NLP: PCFGs also used in bioinformatics (RNA
structure prediction), vision (geometric grammars), and
probably other places.



(Very) Brief History of Context Free Grammars

From: http://lawanddisorder.org/

I 4th century BC: first description by Pān. ini
of a grammar, a set of rules dictating the
order in which clauses and words appear.

I Grammars are tree-structured to model
recursive structure of natural language.

I 1950s: Noam Chomsky invents context
free-grammar formally describing how to
generate these tree structures.



(Very) Brief History of Context Free Grammars

A parse tree:

1 Introduction

The field of natural language processing (NLP) aims to develop algorithms that allow computers
to understand and generate natural language. The field emerged from computational linguistics,
a field whose early history was shaped in part by a rejection of statistical approaches to language,
where “statistical” at the time generally referred to simplistic Markovian models on observed se-
quences of words. Despite this unfavorable historical context, statistical approaches to NLP have
been in ascendancy over the past decade (Manning and Schütze, 1999), driven in part by the avail-
ability of large corpora of text and other linguistic resources on the Internet, and driven in part by a
growth in sophistication among NLP researchers regarding the scope of statistical modeling, partic-
ularly latent-variable modeling. The phenomenon of language itself is also responsible: language
is replete with ambiguity, so it is inevitable that formal inferential methods should play a significant
role in managing this ambiguity.

The majority of the work in statistical NLP has been non-Bayesian, but there is reason to be-
lieve that this is a historical accident. Indeed, despite the large corpora, sparse data problems
abound to which hierarchical Bayesian methods seem well suited. Also, the conditional perspec-
tive of Bayesian statistics seems particularly appropriate for natural language—conditioning on the
current sentence and the current context can provide precise inference despite the high degree of
ambiguity.

In the current chapter, we discuss a Bayesian approach to the problem of syntactic parsing and
the underlying problems of grammar induction and grammar refinement. The central object of
study is the parse tree, an example of which is shown in Figure 1. A substantial amount of the
syntactic structure and relational semantics of natural language sentences can be described using
parse trees. These trees play a central role in a range of activities in modern NLP, including machine
translation (Galley et al., 2004), semantic role extraction (Gildea and Jurafsky, 2002), and question
answering (Hermjakob, 2001), just to name a few. From a statistical perspective, parse trees are an
extremely rich class of objects, and our approach to capturing this class probabilistically will be to
make use of tools from nonparametric Bayesian statistics.
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Figure 1: A parse tree for the sentence They solved the problem with Bayesian statistics.

It seems reasonable enough to model parse trees using context-free grammars (CFGs); indeed,
this goal was the original motivation behind the development of the CFG formalism (Chomsky,
1956), and it remains a major focus of research on parsing to this day. Early work on NLP parsing
concentrated on efficient algorithms for computing the set of all parses for a sentence under a
given CFG. Unfortunately, as we have alluded to, natural language is highly ambiguous. In fact,
the number of parses for a sentence grows exponentially with its length. As a result, systems which
enumerated all possibilities were not useful in practice. Modern work on parsing has therefore
turned to probabilistic models which place distributions over parse trees and probabilistic inference
methods which focus on likely trees (Lari and Young, 1990).

The workhorse model family for probabilistic parsing is the family of probabilistic context-free

From: Liang, P., Jordan, M.I., Klein, D. “Probabilistic Grammars and Hierarchical Dirichlet Processes.” (2009)

Book chapter: The Handbook of Applied Bayesian Analysis.



Probabilistic Context Free Grammars

Set of rules for generating parse trees.
A PCFG consists of:

I A set of terminal symbols Σ (e.g. actual words)

I A set of nonterminal symbols S (e.g. word types)

I A root nonterminal symbol Root ∈ S

I Rule probabilities φ = (φs(γ) : s ∈ S , γ ∈ Σ ∪ (S × S) where
φs(γ) ≥ 0 and

∑
γ φs(γ) = 1 (produce terminal symbols or

pairs of nonterminal symbols)



Context Free Grammars

Chomsky Normal Form is used in this paper:

I A→ BC , A,B,C ∈ S (binary production)

I A→ α, α ∈ Σ (emission)

I Root → ε (empty string)

where A→ BC occurs with probability φA((B,C )).



HDP-PCFG Model

Previous work for learning PCFGs:

I Models have a fixed number symbols.

I Infer maximum-likelihood symbol transition and emission
probabilities by Expectation Maximization algorithm.

I Use pseudocounts for smoothing: may only have a few
training examples of each transition.



HDP-PCFG Model

I Goal: Learn how many grammar symbols to allocate given
data. Use these symbols to learn transition and emission
probabilities.

I Method: Use HDP to model syntactic tree structures.
Nonterminal nodes are symbols.

I Bonus: Develop model for grammar refinement: given a
coarse supervised annotation of tree structures, infer a richer
model by learning how many subsymbols to split from existing
symbols.



HDP-PCFG Model

I Using Chemosky Normal Form grammar, so only has
emissions or binary productions.

I Each grammar symbol is a mixture component. Use DP prior
to let number of grammar symbols →∞.



HDP-PCFG Model

HDP-PCFG

� � GEM(�) [draw top-level symbol weights]
For each grammar symbol z � {1, 2, . . . }:
��T

z � Dirichlet(�T ) [draw rule type parameters]
��E

z � Dirichlet(�E) [draw emission parameters]
��B

z � DP(�B ,��T ) [draw binary production parameters]

For each node i in the parse tree:
�ti � Multinomial(�T

zi
) [choose rule type]

�If ti = EMISSION:
��xi � Multinomial(�E

zi
) [emit terminal symbol]

�If ti = BINARY-PRODUCTION:
��(zL(i), zR(i)) � Multinomial(�B

zi
) [generate children symbols]
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Figure 2: The definition and graphical model of the HDP-PCFG. Since parse trees have unknown structure,
there is no convenient way of representing them in the visual language of traditional graphical models.
Instead, we show a simple fixed example tree. Node 1 has two children, 2 and 3, each of which has one
observed terminal child. We use L(i) and R(i) to denote the left and right children of node i.

In the HMM, the transition parameters of a state
specify a distribution over single next states; simi-
larly, the binary production parameters of a gram-
mar symbol must specify a distribution over pairs
of grammar symbols for its children. We adapt the
HDP machinery to tie these binary production distri-
butions together. The key difference is that now we
must tie distributions over pairs of grammar sym-
bols together via distributions over single grammar
symbols.

Another difference is that in the HMM, at each
time step, both a transition and a emission are made,
whereas in the PCFG either a binary production or
an emission is chosen. Therefore, each grammar
symbol must also have a distribution over the type
of rule to apply. In a CNF PCFG, there are only
two types of rules, but this can be easily generalized
to include unary productions, which we use for our
parsing experiments.

To summarize, the parameters of each grammar
symbol z consists of (1) a distribution over a finite
number of rule types �T

z , (2) an emission distribu-
tion �E

z over terminal symbols, and (3) a binary pro-
duction distribution �B

z over pairs of children gram-
mar symbols. Figure 2 describes the model in detail.

Figure 3 shows the generation of the binary pro-
duction distributions �B

z . We draw �B
z from a DP

centered on ��T , which is the product distribution
over pairs of symbols. The result is a doubly-infinite
matrix where most of the probability mass is con-

state

right child state

left child state

right child state

left child state

� � GEM(�)

��T

�B
z � DP(��T )

Figure 3: The generation of binary production prob-
abilities given the top-level symbol probabilities �.
First, � is drawn from the stick-breaking prior, as
in any DP-based model (a). Next, the outer-product
��T is formed, resulting in a doubly-infinite matrix
matrix (b). We use this as the base distribution for
generating the binary production distribution from a
DP centered on ��T (c).

centrated in the upper left, just like the top-level dis-
tribution ��T .

Note that we have replaced the general
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HDP-PCFG Model

Key points:

I Symbols are derived from global stick-breaking prior β

I DP(αB , ββT ) gives a distribution over pairs of symbols for
each symbol.

I Unlike in HDP-HMM, either binary production or emission
chosen. φTz is distribution over type of rule to apply (2 types
for CNF).

I Although use Dirichlet/Multinomial for emission distribution
for NLP, could use more general base measure to get different
emission distribution.



HDP-PCFG Model

Graphical model of fixed tree
(not showing hyperparameters α, αT , αE , αB):

HDP-PCFG

� � GEM(�) [draw top-level symbol weights]
For each grammar symbol z � {1, 2, . . . }:
��T

z � Dirichlet(�T ) [draw rule type parameters]
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z � Dirichlet(�E) [draw emission parameters]
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z � DP(�B ,��T ) [draw binary production parameters]

For each node i in the parse tree:
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Figure 2: The definition and graphical model of the HDP-PCFG. Since parse trees have unknown structure,
there is no convenient way of representing them in the visual language of traditional graphical models.
Instead, we show a simple fixed example tree. Node 1 has two children, 2 and 3, each of which has one
observed terminal child. We use L(i) and R(i) to denote the left and right children of node i.
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larly, the binary production parameters of a gram-
mar symbol must specify a distribution over pairs
of grammar symbols for its children. We adapt the
HDP machinery to tie these binary production distri-
butions together. The key difference is that now we
must tie distributions over pairs of grammar sym-
bols together via distributions over single grammar
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Another difference is that in the HMM, at each
time step, both a transition and a emission are made,
whereas in the PCFG either a binary production or
an emission is chosen. Therefore, each grammar
symbol must also have a distribution over the type
of rule to apply. In a CNF PCFG, there are only
two types of rules, but this can be easily generalized
to include unary productions, which we use for our
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tion �E
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HDP-PCFG Model
Distribution over pairs of child symbols:

HDP-PCFG

� � GEM(�) [draw top-level symbol weights]
For each grammar symbol z � {1, 2, . . . }:
��T

z � Dirichlet(�T ) [draw rule type parameters]
��E

z � Dirichlet(�E) [draw emission parameters]
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z � DP(�B ,��T ) [draw binary production parameters]

For each node i in the parse tree:
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�If ti = EMISSION:
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Figure 2: The definition and graphical model of the HDP-PCFG. Since parse trees have unknown structure,
there is no convenient way of representing them in the visual language of traditional graphical models.
Instead, we show a simple fixed example tree. Node 1 has two children, 2 and 3, each of which has one
observed terminal child. We use L(i) and R(i) to denote the left and right children of node i.

In the HMM, the transition parameters of a state
specify a distribution over single next states; simi-
larly, the binary production parameters of a gram-
mar symbol must specify a distribution over pairs
of grammar symbols for its children. We adapt the
HDP machinery to tie these binary production distri-
butions together. The key difference is that now we
must tie distributions over pairs of grammar sym-
bols together via distributions over single grammar
symbols.

Another difference is that in the HMM, at each
time step, both a transition and a emission are made,
whereas in the PCFG either a binary production or
an emission is chosen. Therefore, each grammar
symbol must also have a distribution over the type
of rule to apply. In a CNF PCFG, there are only
two types of rules, but this can be easily generalized
to include unary productions, which we use for our
parsing experiments.

To summarize, the parameters of each grammar
symbol z consists of (1) a distribution over a finite
number of rule types �T

z , (2) an emission distribu-
tion �E

z over terminal symbols, and (3) a binary pro-
duction distribution �B
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mar symbols. Figure 2 describes the model in detail.
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HDP-PCFG for Grammar Refinement

I Want to refine existing, human-created grammar.

I Are given a set of symbols. Want to allocate some number of
subsymbols for each symbol.

I Idea is to better capture subtleties in types of grammatical
objects (e.g. different types of noun phrases)



HDP-PCFG for Grammar Refinement

G0 and F (�E
zi

) pair with Dirichlet(�E) and
Multinomial(�E

zi
) to specialize to natural language,

but there is no difficulty in working with parse
trees with arbitrary non-multinomial observations
or more sophisticated word models.

In many natural language applications, there is
a hard distinction between pre-terminal symbols
(those that only emit a word) and non-terminal sym-
bols (those that only rewrite as two non-terminal or
pre-terminal symbols). This can be accomplished
by letting �T = (0, 0), which forces a draw �T

z to
assign probability 1 to one rule type.

An alternative definition of an HDP-PCFG would
be as follows: for each symbol z, draw a distribution
over left child symbols lz � DP(�) and an inde-
pendent distribution over right child symbols rz �
DP(�). Then define the binary production distribu-
tion as their cross-product �B

z = lzr
T
z . This also

yields a distribution over symbol pairs and hence de-
fines a different type of nonparametric PCFG. This
model is simpler and does not require any additional
machinery beyond the HDP-HMM. However, the
modeling assumptions imposed by this alternative
are unappealing as they assume the left child and
right child are independent given the parent, which
is certainly not the case in natural language.

2.5 HDP-PCFG for grammar refinement
An important motivation for the HDP-PCFG is that
of refining an existing treebank grammar to alle-
viate unrealistic independence assumptions and to
improve parsing accuracy. In this scenario, the set
of symbols is known, but we do not know how
many subsymbols to allocate per symbol. We in-
troduce the HDP-PCFG for grammar refinement
(HDP-PCFG-GR), an extension of the HDP-PCFG,
for this task.

The essential difference is that now we have a
collection of HDP-PCFG models for each symbol
s � S, each one operating at the subsymbol level.
While these HDP-PCFGs are independent in the
prior, they are coupled through their interactions in
the parse trees. For completeness, we have also in-
cluded unary productions, which are essentially the
PCFG counterpart of transitions in HMMs. Finally,
since each node i in the parse tree involves a symbol-
subsymbol pair (si, zi), each subsymbol needs to
specify a distribution over both child symbols and

subsymbols. The former can be handled through
a finite Dirichlet distribution since all symbols are
known and observed, but the latter must be handled
with the Dirichlet process machinery, since the num-
ber of subsymbols is unknown.

HDP-PCFG for grammar refinement (HDP-PCFG-GR)

For each symbol s � S:
��s � GEM(�) [draw subsymbol weights]
�For each subsymbol z � {1, 2, . . . }:
���T

sz � Dirichlet(�T ) [draw rule type parameters]
���E

sz � Dirichlet(�E(s)) [draw emission parameters]
���u

sz � Dirichlet(�u) [unary symbol productions]
���b

sz � Dirichlet(�b) [binary symbol productions]
��For each child symbol s� � S:
����U

szs� � DP(�U ,�s�) [unary subsymbol prod.]
��For each pair of children symbols (s�, s��) � S � S:
����B

szs�s�� � DP(�B ,�s��
T
s��) [binary subsymbol]

For each node i in the parse tree:
�ti � Multinomial(�T

sizi
) [choose rule type]

�If ti = EMISSION:
��xi � Multinomial(�E

sizi
) [emit terminal symbol]

�If ti = UNARY-PRODUCTION:
��sL(i) � Multinomial(�u

sizi
) [generate child symbol]

��zL(i) � Multinomial(�U
sizisL(i)

) [child subsymbol]
�If ti = BINARY-PRODUCTION:
��(sL(i), sR(i)) � Mult(�sizi) [children symbols]
��(zL(i), zR(i)) � Mult(�B

sizisL(i)sR(i)
) [subsymbols]

2.6 Variational inference
We present an inference algorithm for the HDP-
PCFG model described in Section 2.4, which can
also be adapted to the HDP-PCFG-GR model with
a bit more bookkeeping. Most previous inference
algorithms for DP-based models involve sampling
(Escobar and West, 1995; Teh et al., 2006). How-
ever, we chose to use variational inference (Blei
and Jordan, 2005), which provides a fast determin-
istic alternative to sampling, hence avoiding issues
of diagnosing convergence and aggregating samples.
Furthermore, our variational inference algorithm es-
tablishes a strong link with past work on PCFG re-
finement and induction, which has traditionally em-
ployed the EM algorithm.

In EM, the E-step involves a dynamic program
that exploits the Markov structure of the parse tree,
and the M-step involves computing ratios based on
expected counts extracted from the E-step. Our vari-
ational algorithm resembles the EM algorithm in
form, but the ratios in the M-step are replaced with
weights that reflect the uncertainty in parameter es-
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HDP-PCFG for Grammar Refinement

Key points:

1. Similar to previous model, but for each symbol s ∈ S . Creates
distribution over symbol/subsymbol pairs (si , zi ).

2. Included unary productions (equivalent of state transition in
HMM).

3. Since annotated symbols have child symbols already, have to
have distribution over child symbols and subsymbols.



HDP-PCFG Variational Inference

I The authors chose to use variational inference to avoid having
to deal with covergence and sample aggregation.

I Adapts existing efficient EM algorithm for PCFG refinement
and induction.

I EM algorithm uses Markov structure of parse tree to do
dynamic programming in E-step.



HDP-PCFG Variational Inference

I Recall: variational methods approximate posterior p(θ, z|x)
with

q∗ = arg min
q∈Q

KL(q(θ, z)||p(θ, z|x))

I In this case: θ = (β, φ)
I β = top-level symbol probabilities
I φ = rule probabilities
I z = training parse trees
I x = observed sentences



HDP-PCFG Variational Inference

They use a structured mean-field approxmation. I.e. only look at
distributions of the form

Q ≡
{

q : q(z)q(β)
K∏

z=1

q(φTz )q(φEz )q(φBz )

}

where q(φTz ), q(φEz ), q(φBz ) are Dirichlet, q(z) is multinomial, q(β)
is a degenerate distribution truncated at K (βz = 0 if z > K ).



HDP-PCFG Variational Inference

Factorized model q = q(β)q(φ)q(z):

�

�B
z

�T
z

�E
z

z 1

z1

z2 z3

T

Parameters Trees

Figure 4: We approximate the true posterior p over
parameters � and latent parse trees z using a struc-
tured mean-field distribution q, in which the distri-
bution over parameters are completely factorized but
the distribution over parse trees is unconstrained.

timates. Because of this procedural similarity, our
method is able to exploit the desirable properties of
EM such as simplicity, modularity, and efficiency.

2.7 Structured mean-field approximation
We denote parameters of the HDP-PCFG as � =
(�,�), where � denotes the top-level symbol prob-
abilities and � denotes the rule probabilities. The
hidden variables of the model are the training parse
trees z. We denote the observed sentences as x.

The goal of Bayesian inference is to compute the
posterior distribution p(�, z | x). The central idea
behind variational inference is to approximate this
intractable posterior with a tractable approximation.
In particular, we want to find the best distribution q�

as defined by

q� def
= argmin

q�Q
KL(q(�, z)||p(�, z | x)), (4)

where Q is a tractable subset of distributions. We
use a structured mean-field approximation, meaning
that we only consider distributions that factorize as
follows (Figure 4):

Q def
=

�
q(z)q(�)

K�

z=1

q(�T
z )q(�E

z )q(�B
z )

�
. (5)

We further restrict q(�T
z ), q(�E

z ), q(�B
z ) to be

Dirichlet distributions, but allow q(z) to be any
multinomial distribution. We constrain q(�) to be a

degenerate distribution truncated at K; i.e., �z = 0
for z > K. While the posterior grammar does have
an infinite number of symbols, the exponential de-
cay of the DP prior ensures that most of the proba-
bility mass is contained in the first few symbols (Ish-
waran and James, 2001).2 While our variational ap-
proximation q is truncated, the actual PCFG model
is not. As K increases, our approximation improves.

2.8 Coordinate-wise ascent
The optimization problem defined by Equation (4)
is intractable and nonconvex, but we can use a sim-
ple coordinate-ascent algorithm that iteratively op-
timizes each factor of q in turn while holding the
others fixed. The algorithm turns out to be similar in
form to EM for an ordinary PCFG: optimizing q(z)
is the analogue of the E-step, and optimizing q(�)
is the analogue of the M-step; however, optimizing
q(�) has no analogue in EM. We summarize each
of these updates below (see (Liang et al., 2007) for
complete derivations).

Parse trees q(z): The distribution over parse trees
q(z) can be summarized by the expected suffi-
cient statistics (rule counts), which we denote as
C(z � zl zr) for binary productions and C(z �
x) for emissions. We can compute these expected
counts using dynamic programming as in the E-step
of EM.

While the classical E-step uses the current rule
probabilities �, our mean-field approximation in-
volves an entire distribution q(�). Fortunately, we
can still handle this case by replacing each rule prob-
ability with a weight that summarizes the uncer-
tainty over the rule probability as represented by q.
We define this weight in the sequel.

It is a common perception that Bayesian inference
is slow because one needs to compute integrals. Our
mean-field inference algorithm is a counterexample:
because we can represent uncertainty over rule prob-
abilities with single numbers, much of the existing
PCFG machinery based on EM can be modularly
imported into the Bayesian framework.

Rule probabilities q(�): For an ordinary PCFG,
the M-step simply involves taking ratios of expected

2In particular, the variational distance between the stick-
breaking distribution and the truncated version decreases expo-
nentially as the truncation level K increases.
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HDP-PCFG Variational Inference

I Optimization of q∗ is intractable, but can use
coordinate-ascent algorithm similar to EM.

I Optimize one factor at a time while keeping other factors
constant



HDP-PCFG Variational Inference

Parse trees q(z)

I Uses inside-out algorithm with unnormalized rule weights
W (r): dynamic programming algorithm similar to
forward-backward for HMMs

I Then computes expected sufficient statistics, rule counts C (r):
of binary productions C (z → zlzr ) and emissions C (z → x).



HDP-PCFG Variational Inference

Rule probabilities q(φ)

I Update Dirichlet posteriors: C (r) + pseudocounts

I Compute rule weights: Compute multinomial weights

W B
z (zl , zr ) = expEq[log φBz (zl , zr )] =

eΨ(C(z→zlzr )+αBβzl βzr )

eΨ(C(z→∗∗)+αB)

=
eΨ(prior(r)+C(r))

eΨ(
∑

r′ prior(r ′)+C(r”))

where exp Ψ(·) increases the weight of large counts and
decrease the weight of small counts (as in DP).

I Similar for emission distributions.



HDP-PCFG Variational Inference

Top-level symbol probabilities q(β):

I Truncate at level K . q(β) = δβ∗(β) so trying to find single
best β∗. Use gradient projection method to find:

arg max
β∗

L(β∗) = log GEM(β∗;α)

+
K∑

z=1

Eq[log Dirichlet(φBz ;αBβ∗β∗T )].



Results

Recovering synthetic grammar:

S ! X1X1 | X2X2 | X3X3 | X4X4

X1 ! a1 | b1 | c1 | d1

X2 ! a2 | b2 | c2 | d2

X3 ! a3 | b3 | c3 | d3

X4 ! a4 | b4 | c4 | d4

S

Xi Xi

{ai,bi, ci,di} {ai,bi, ci,di}

(a) (b)

Figure 6: (a) A synthetic grammar with a uniform
distribution over rules. (b) The grammar generates
trees of the form shown on the right.

PCFG fails to do so because it has no built-in con-
trol over grammar complexity. From the grammar in
Figure 6, we generated 2000 trees. The two terminal
symbols always have the same subscript, but we col-
lapsed Xi to X in the training data. We trained the
HDP-PCFG-GR, with truncation K = 20, for both
S and X for 100 iterations. We set all hyperparame-
ters to 1.

Figure 7 shows that the HDP-PCFG-GR recovers
the original grammar, which contains only 4 sub-
symbols, leaving the other 16 subsymbols unused.
The standard PCFG allocates all the subsymbols to
fit the exact co-occurrence statistics of left and right
terminals.

Recall that a rule weight, as defined in Equa-
tion (9), is analogous to a rule probability for stan-
dard PCFGs. We say a rule is effective if its weight
is at least 10�6 and its left hand-side has posterior
is also at least 10�6. In general, rules with weight
smaller than 10�6 can be safely pruned without af-
fect parsing accuracy. The standard PCFG uses all
20 subsymbols of both S and X to explain the data,
resulting in 8320 effective rules; in contrast, the
HDP-PCFG uses only 4 subsymbols for X and 1 for
S, resulting in only 68 effective rules. If the thresh-
old is relaxed from 10�6 to 10�3, then only 20 rules
are effective, which corresponds exactly to the true
grammar.

3.2 Parsing the Penn Treebank
In this section, we show that our variational HDP-
PCFG can scale up to real-world data sets. We ran
experiments on the Wall Street Journal (WSJ) por-
tion of the Penn Treebank. We trained on sections
2–21, used section 24 for tuning hyperparameters,
and tested on section 22.

We binarize the trees in the treebank as follows:
for each non-terminal node with symbol X , we in-
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Figure 7: The posteriors over the subsymbols of the
standard PCFG is roughly uniform, whereas the pos-
teriors of the HDP-PCFG is concentrated on four
subsymbols, which is the true number of symbols
in the grammar.

troduce a right-branching cascade of new nodes with
symbol X . The end result is that each node has at
most two children. To cope with unknown words,
we replace any word appearing fewer than 5 times
in the training set with one of 50 unknown word to-
kens derived from 10 word-form features.

Our goal is to learn a refined grammar, where each
symbol in the training set is split into K subsym-
bols. We compare an ordinary PCFG estimated with
maximum likelihood (Matsuzaki et al., 2005) and
the HDP-PCFG estimated using the variational in-
ference algorithm described in Section 2.6.

To parse new sentences with a grammar, we com-
pute the posterior distribution over rules at each span
and extract the tree with the maximum expected cor-
rect number of rules (Petrov and Klein, 2007).

3.2.1 Hyperparameters
There are six hyperparameters in the HDP-PCFG-

GR model, which we set in the following manner:
� = 1, �T = 1 (uniform distribution over unar-
ies versus binaries), �E = 1 (uniform distribution
over terminal words), �u(s) = �b(s) = 1

N(s) , where
N(s) is the number of different unary (binary) right-
hand sides of rules with left-hand side s in the tree-
bank grammar. The two most important hyperpa-
rameters are �U and �B , which govern the sparsity
of the right-hand side for unary and binary rules.
We set �U = �B although more performance could
probably be gained by tuning these individually. It
turns out that there is not a single �B that works for
all truncation levels, as shown in Table 1.

If the top-level distribution � is uniform, the value
of �B corresponding to a uniform prior over pairs of
children subsymbols is K2. Interestingly, the opti-
mal �B appears to be superlinear but subquadratic
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Generate 2000 trees, with terminal symbols having same i , then
replace Xi with X .



Results

I Empirical results measured by F1 = 2 precision∗recall
precision+recall .

I Uses labeled brackets to represent the tree:
LB(s) = {(s[i ,j], [i , j ]) : s[i ,j] 6= Non-node, 1 ≤ i ≤ j ≤ n}

I precision(s, s ′) = # correct
# returned = |LB(s)∩LB(s′)|

|LB(s′)|

I recall(s, s ′) = # correct
# should have returned = |LB(s)∩LB(s′)|

|LB(s)|
I s is true parse tree, s ′ is predicted.



Results

Applied to one section (WSJ) of Penn Treebank (corpus of parsed
sentences), preprocessed so fit CNF:

truncation K 2 4 8 12 16 20
best �B 16 12 20 28 48 80

uniform �B 4 16 64 144 256 400

Table 1: For each truncation level, we report the �B

that yielded the highest F1 score on the development
set.

K PCFG PCFG (smoothed) HDP-PCFG
F1 Size F1 Size F1 Size

1 60.47 2558 60.36 2597 60.5 2557
2 69.53 3788 69.38 4614 71.08 4264
4 75.98 3141 77.11 12436 77.17 9710
8 74.32 4262 79.26 120598 79.15 50629

12 70.99 7297 78.8 160403 78.94 86386
16 66.99 19616 79.2 261444 78.24 131377
20 64.44 27593 79.27 369699 77.81 202767

Table 2: Shows development F1 and grammar sizes
(the number of effective rules) as we increase the
truncation K.

in K. We used these values of �B in the following
experiments.

3.2.2 Results

The regime in which Bayesian inference is most
important is when training data is scarce relative to
the complexity of the model. We train on just sec-
tion 2 of the Penn Treebank. Table 2 shows how
the HDP-PCFG-GR can produce compact grammars
that guard against overfitting. Without smoothing,
ordinary PCFGs trained using EM improve as K in-
creases but start to overfit around K = 4. Simple
add-1.01 smoothing prevents overfitting but at the
cost of a sharp increase in grammar sizes. The HDP-
PCFG obtains comparable performance with a much
smaller number of rules.

We also trained on sections 2–21 to demon-
strate that our methods can scale up and achieve
broadly comparable results to existing state-of-the-
art parsers. When using a truncation level of K =
16, the standard PCFG with smoothing obtains an
F1 score of 88.36 using 706157 effective rules while
the HDP-PCFG-GR obtains an F1 score of 87.08 us-
ing 428375 effective rules. We expect to see greater
benefits from the HDP-PCFG with a larger trunca-
tion level.

4 Related work

The question of how to select the appropriate gram-
mar complexity has been studied in earlier work.
It is well known that more complex models nec-
essarily have higher likelihood and thus a penalty
must be imposed for more complex grammars. Ex-
amples of such penalized likelihood procedures in-
clude Stolcke and Omohundro (1994), which used
an asymptotic Bayesian model selection criterion
and Petrov et al. (2006), which used a split-merge
algorithm which procedurally determines when to
switch between grammars of various complexities.
These techniques are model selection techniques
that use heuristics to choose among competing sta-
tistical models; in contrast, the HDP-PCFG relies on
the Bayesian formalism to provide implicit control
over model complexity within the framework of a
single probabilistic model.

Johnson et al. (2006) also explored nonparamet-
ric grammars, but they do not give an inference al-
gorithm for recursive grammars, e.g., grammars in-
cluding rules of the form A � BC and B � DA.
Recursion is a crucial aspect of PCFGs and our
inference algorithm does handle it. Finkel et al.
(2007) independently developed another nonpara-
metric model of grammars. Though their model is
also based on hierarchical Dirichlet processes and is
similar to ours, they present a different inference al-
gorithm which is based on sampling. Kurihara and
Sato (2004) and Kurihara and Sato (2006) applied
variational inference to PCFGs. Their algorithm is
similar to ours, but they did not consider nonpara-
metric models.

5 Conclusion

We have presented the HDP-PCFG, a nonparametric
Bayesian model for PCFGs, along with an efficient
variational inference algorithm. While our primary
contribution is the elucidation of the model and algo-
rithm, we have also explored some important empir-
ical properties of the HDP-PCFG and also demon-
strated the potential of variational HDP-PCFGs on a
full-scale parsing task.
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Recap

Main contributions:

I Used HDP prior to allow Chomsky Normal Form PCFG to
learn the number of symbols in a grammar while also learning
the rule transition and emission probabilities.

I Developed an efficient variational methods for inference,
similar to existing EM algorithms for PCFG.

I Can be extended to model other kinds of context free
grammars.

Possible problems:

I Variational methods only finds local maxima?

I Anything else?


